Hadron Spectroscopy

Stephen Lars Olsen
Institute for Basic Science (KOREA)
University of the Chinese Academy of Science
UCAS Physics-department, June 20 - July 6, 2014

Summary (lecture 1)

- The (expected) discovery of the π-meson and the (unexpected) discovery of the K-meson \& \wedge baryon in 1947 marked the beginning of hadron physics.
- The fact that K-mesons were produced in association with Λ-baryons led to the discovery of Strangeness, the $1^{\text {st }}$ flavor. S is conserved in strong and electro-magnetic, but not in weak interactions.
- Experiments showed that the spin and parity of the π, K and η mesons are all $\mathrm{J}^{\mathrm{P}}=0^{-}$.
- A matching set of meson resonances with $J^{P}=1^{*}$, the ρ, K^{*} and ω mesons, were found in bubble chamber experiments.
- A set of spin=3/2 baryon resonances, the $\Delta(1232), Y^{*}(1385)$ (now called the $\Sigma(1385))$ and $\equiv(1530)$ was also discovered.
- Mesons come in octets; baryons come in octets and decuplets.

Lecture 2: Are hadrons made from more fundamental constituents?

But $1^{\text {st: }}$ Why are \equiv baryons called "cascades?"

$\equiv \leftarrow$ Greek letter"Xi" "cascade" \leftarrow English word for multi-tier waterfall

$$
\begin{aligned}
& K^{-} p \rightarrow K^{0} \Xi^{0} \pi^{+} \pi^{-} \\
& \pi^{+} \pi^{-} \longleftarrow \overleftrightarrow{\longleftrightarrow} \longleftrightarrow \pi^{0} \Lambda^{0} \\
& \gamma e^{+} e^{-} \longleftarrow \pi^{-} p
\end{aligned}
$$

Elementary particle "Zoo" in 1963

Two "classes" of hadrons "non-strange:" n, p, p, r,... "strange:" L, S, K, K*, ...

Tables of Elementary Particles and Resonant States

Matts Roos

Nordisk: Institut for Teoretisk Atomfysik, Copenhagen, Denmark
\leftarrow "wallet cards"
baryon resonances
tates

Meson and Baryon Octets

resonances

$J^{\mathrm{P}}=1^{\text {² }}$ vector meson octet

$J^{\mathrm{P}}=3 / \mathbf{2}^{+}$baryon "decuplet"

$1^{\text {st }}$ attempts at Classification

Gell-Mann, Nakano, Nishijima realized that electric charge (Q) of all particles could be related to isospin (3rd component), Baryon number (B) and Strangeness (S):

$$
\mathrm{Q}=\mathrm{I}_{3}+(\mathrm{S}+\mathrm{B}) / 2=\mathrm{I}_{3}+\mathrm{Y} / 2
$$

hypercharge $(\mathrm{Y})=(\mathrm{S}+\mathrm{B})$
Interesting patterns emerge when I_{3} is plotted vs. Y

1961: Gell-Mann, Nishijima \& Nee'man: The Eightfold Way

The Eightfold Way appears in the Buddhist teaching:
"This is the noble truth that leads to the cessation of pain. This is the noble eightfold way. . ."

Octets (and decuplets) are representations of the SU(3) Lie group:

SU(2) group:

Angular Momentum in QM
Pauli Matrices

$$
\begin{aligned}
& \sigma_{1}=\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
& \sigma_{2}=\sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \\
& \sigma_{3}=\sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
\end{aligned}
$$

Representations:
$\binom{+\frac{1}{2}}{0}\binom{0}{-\frac{1}{2}}$
Spin $=\mathbf{1 / 2}$$\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right) \ldots$
Spin=1

SU(3) group:
Generalization of SU(2)
Gell-Mann Matrices

Representations:

SU(3) prediction for the Ω^{-}mass

Each unit of Strangeness increases M by 150 MeV

Gell-Mann Okubo mass formula

1965: Ω^{-}discovery

1965: the Ω^{-}was discovered at the Brookhaven Lab in NY. USA with $\mathrm{S}=-3$ \& $\mathrm{M}=1672 \mathrm{MeV}$, near the Gell-Mann/Okubo prediction

Ω^{-}seen at CERN too

Omega minus produced by 4.2 GeV K

This remarkable event shows the production and decay of an omega-minus by a 4.2 GeV beam K^{\prime} particle in the CERN 2 metre hydrogen bubble chamber.

In this event there are two vees: one comes from the primary interaction while the other comes from the kink. (You can check this by printing off the event and then following back - with a ruler - the line joining the point where the vee tracks cross to the vee decay point. It clearly points to the kink.)

The track from the kink must be a ${K^{-}}^{-}$or a_{π}^{-}, depending on whether the parent particle was an Ω^{-}or a Ξ^{-}. This track itself kinks, quite considerably, telling us that it is a \bar{Z}. (The mass of a μ is so close to that of a π that it could not provide the energy to produce such a sharp kink.)

So, without any measurements, we have identified an Ω^{-}decaying to $\Lambda^{\circ} \mathcal{K}^{-}$.
A measurement of the event reveals that the reaction is

another important discovery occurred at about the same time

Discovery of the $\phi(1020)$

-- more important than the Ω^{-}? --

Phys.Rev.Lett. 10, 134 (1963)

$$
K^{-} p \rightarrow K^{0} \bar{K}^{0} n \Leftarrow P_{K^{-}}=2.23 \mathrm{GeV}
$$

$$
K^{-} p \rightarrow K^{+} K^{-} n
$$

$M_{\phi}=1019.5 \pm \mathrm{MeV}$ ¢well above 3π threshold $\Gamma_{\phi}=4.26 \pm 0.04 \mathrm{MeV}$ narrower than ω (782) $J^{P}=1^{-}$
$I=0$

no $\phi \rightarrow \pi^{+} \pi^{-} ; \phi \rightarrow \pi^{+} \pi^{-} \pi^{0}<\phi \rightarrow K^{+} K^{-}$

For $\mathrm{J}=1^{-}$and $\mathrm{I}=0 . \phi \rightarrow \pi^{+} \pi^{-}$is forbidden

$\phi \rightarrow \pi^{+} \pi \pi^{0}$ is allowed and has lots of phasespace. Why is it suppressed relative to $\phi \rightarrow K^{+} K^{-}$, which has tiny phase-space?

what's the difference between the $\omega(782)$ and the $\phi(1020)$?

Partial width: $\quad \Gamma(X \rightarrow Y+Z) \equiv B f(X \rightarrow Y+Z) \times \Gamma_{\text {total }}^{X}$
This is what theorists calculate --

$$
\begin{gathered}
\begin{array}{c}
\text { same quantum } \\
\text { numbers }
\end{array}>\Gamma\left(\omega(782) \rightarrow \pi^{+} \pi^{-} \pi^{0}\right) \approx 7.5 \mathrm{MeV} \text { w is } 10 \times \text { larger } \\
\\
\hline
\end{gathered}
$$

＂totalitarian＂principle

What isn＇t forbidden， is mandatory

不被禁止的都是强制性的

What enhances $\phi \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}$\＆ suppresses $\phi \rightarrow \pi^{+} \pi^{-} \pi^{0}$ ？

Gell－
Mann

early attempts to identify hadron constituents

$1^{\text {st }}$ attempt to identify hadron constituents: Fermi-Yang

Fermi \& Yang in 1949
(7 years before $\overline{\mathrm{p}}$ discovery): if $N \bar{N}$ potential is attractive, $N \& \bar{N}$ could bind to form a π-meson.

Physical Review
A journal of experimental and theoretical physics established by E. L. Nichols in 1893

$$
\left|\pi^{+}\right\rangle=|p\rangle|\bar{n}\rangle
$$

Second Series, Vol. 76, No. 12	Pg 1739	DECEMBER 15, 1949

Are Mesons Elementary Particles?
E. Fermi and C. n. Yang*

Institute for Nuclear Studies, University of Chicago, Chicago, Illinois
(Received August 24, 1949)

$$
\begin{aligned}
& \left|\pi^{0}\right\rangle=\frac{1}{\sqrt{2}}(|p\rangle|\bar{p}\rangle+|n\rangle|\bar{n}\rangle) \\
& \left|\pi^{-}\right\rangle=|n\rangle|\bar{p}\rangle
\end{aligned}
$$

The hypothesis that π-mesons may be composite particles formed by the association of a nucleon with an anti-nucleon is discussed. From an extremely crude discussion of the model it appears that such a meson would have in most respects properties similar to those of the meson of the Yukawa theory.

$2^{\text {nd }}$ attempt to identify hadron constituents: Sakata

1956 Sakata Sakata Model
All the hadrons are composite states of
p, n, Λ : Fundamental Triplet

Shoichi Sakata 1911-1970

It seems to me that the present state of the theory of new particles is very similar to that of the atomic nuclei 25 years ago.

Supposing that the similar situation is realized at present, I proposed a compound hypothesis for new unstable particles to account for Nishijima-Gell-Mann's rule.
S. Sakata, Prog. Theor. Phys. 16 (1956), 686.

IYby Ikeda, Ugawa, Uhnukı

Sakata's Notebook

Sakata calls the Λ^{0} and the K mesons by their old names: $\mathrm{V}^{0}, \theta^{+}, 0$ and $\tau^{+, 0}$

Sakata model produce the meson octets

$J^{\mathrm{P}}=0^{-}$meson octet

but the baryon decuplet has problems

Sakata's baryon octet is a little peculiar

Sakata's baryon octet

Sakata also explains why

 $\phi \rightarrow K^{+} K^{-}$and $\omega \rightarrow \pi^{+} \pi^{-} \pi^{0}$

OZI suppression

initial state

initial state

processes in which there are no constituent lines connecting the initial \&final states are suppressed

Comments on the Sakata model

-It reproduces the meson octets
-it can explain the $\phi-\omega$ puzzle

- It can produce baryon octets and decuplets, but with some $S=-3$ state charge shifted by $\Delta Q=+1$
- It treats the p. n and \wedge as special, for no obvious reason
- It contains some truth but it is not the whole story

Quarks (Aces?)

1964: triplet = the most fundamental representation of SU(3)

Textbooks: Quark-Parton-Model

mesons = quark-antiquark

$$
\pi^{-}=(d \bar{u})
$$

baryons = quark-quark-quark
(qqq)

$\Lambda=(u d s)$

Fabulously successful

Quarks are probably the most well known particle physics quantity among the general public

DILBERT

Google Search: quark: 25,500,000 results
Yao Ming: 17,300,000 results

Quarks \& Antiquarks in $I_{z}-Y$ space

Make mesons from quark-antiquark

9 states: $3 \otimes \overline{3}=1 \oplus 8 \begin{gathered}\text { SUU3) singlet } \\ + \text { SU(3) octet }\end{gathered}$

Ground state mesons

$\left(\pi^{+}, \pi^{0}, \pi^{-}\right)=$lightest no s-quarks

($\rho^{+}, \rho^{0}, \rho^{-}$)=lightest no s-quarks

Discovery of the η^{\prime} meson

Phys.Rev.Lett. 12, 527 (1964)
Berkeley 72" BC

Phys.Rev.Lett. 12, 546 (1964)
Brookhaven 80" BC

$$
\mathrm{M}=957.8 \pm 1 \mathrm{MeV} \quad \Gamma=0.20 \pm 0.01 \mathrm{MeV} \quad \mathrm{~J}^{\mathrm{P}}=0^{-}
$$

meson "nonet" = octet + singlet

$\mathrm{J}^{\mathrm{P}}=\mathrm{O}^{-}$meson octet

$\eta-\eta \prime m i x i n g$

$S U(3)$ has two η-mesons, an "octet" η_{8}, and a singlet η_{1}, where:

$$
\begin{aligned}
& \eta_{1}=\frac{1}{\sqrt{3}}(u \bar{u}+d \bar{d}+s \bar{s}) \\
& \eta_{8}=\frac{1}{\sqrt{6}}(u \bar{u}+d \bar{d}-2 s \bar{s})
\end{aligned}
$$

However, $\mathrm{SU}(3)$ is a broken symmetry, so η_{1} an η_{8} "mix". Thus the physical η and η^{\prime} mesons are each mixtures of η_{1} and η_{8} :

$$
\binom{\eta}{\eta^{\prime}}=\left(\begin{array}{cc}
\cos \theta_{P} & \sin \theta_{P} \\
-\sin \theta_{P} & \cos \theta_{P}
\end{array}\right)\binom{\eta_{1}}{\eta_{8}}
$$

where θ_{p} is the "pseudoscalar mixing angle." The range of of allowed values is:

$$
\theta_{P}=-11^{\circ} \Leftrightarrow-25^{\circ}
$$

For $\theta_{p}=-9.7^{\circ}$, the $\eta \& \eta^{\prime}$ have same $s \bar{s}$ and $(u \bar{u}+d \bar{d}) / \sqrt{ } 2$ content (with opposite relative sign).

$\omega-\phi$ mixing

The ω and ϕ also mix, but in this case θ_{v}, the "vector mixing angle" is large and positive:

$$
\theta_{V} \approx 37^{\circ}
$$

this is very close to the "ideal" mixing angle

$$
\theta_{V}^{\text {ideal }}=\arctan (1 / \sqrt{2})=35.3^{\circ}
$$

in which case the ϕ-meson would be $100 \% s \bar{s}$ while the ω-meson would be $100 \%(u \bar{u}+d \bar{d}) / v 2$. In fact the $\bar{s} \bar{s}$ content of the ω is about 3% of $(u \bar{u}+d \bar{d}) / v 2$.

How about the baryons=qqq model?

Make baryons from 3 quarks

HW: Finish the procedure

Answer

Ground state Baryons

Summary (lecture 2)

- The fractionally charged quark model does a good job at explaining then patterns and properties of the ground state mesons and baryons.
 for the lowest-lying mesons \& baryons, but fail otherwise

Discussion/HW items

Why is $\phi(1020) \rightarrow \pi \pi$ forbidden?
In octet-singlet meson mixing there are two extreme cases:
--in one, called "Ideal mixing," one of the physical mesons is purely $s \bar{s}$, while the other is purely $(u \bar{u}+d \bar{d}) / \sqrt{ } 2$.
--in the other extreme, the two physical mesons have equal $s \bar{s}$ and $(u \bar{u}+d \bar{d}) / \sqrt{ } 2$ content, with opposite relative sign.

Show that ideal mixing occurs when the mixing angle $\theta=35.3^{\circ}$ and the equal $s \bar{s}$-content cases occurs when $\theta=-9.7^{\circ}$.

