Hadron Spectroscopy

Stephen Lars Olsen
Institute for Basic Science (KOREA)
University of the Chinese Academy of Science
UCAS Physics-department, June 20 - July 6, 2014

Lecture 1: What are hadrons?

What is a hadron?

Lev Okun 1929-2015

ICHEP-XI Geneva 1962
Notwithstanding the fact that this report deals with weak interactions, we shall frequently have to speak of strongly interacting particles. These particles pose not only numerous scientific problems, but also a terminological problem. The point is that "strongly interacting particles" is a very clumsy term which does not yield itself to the formation of an adjective. For this reason, to take but one instance, decays into strongly interacting particles are called non-leptonic. This definition is not exact because "non-leptonic" may also signify "photonic". In this report I shall call strongly interacting particles "hadrons", and the corresponding decays "hadronic" (the Greek áסןóৎ signifies "large", "massive", in contrast to $\lambda \varepsilon$ rrós which means "small", "light"). I hope that this terminology will prove to be convenient. - Lev B. Okun, 1962

Outline

- Main Lecture
- a little bit of the history of particle physics discover of the π and K mesons and strange baryons units, symmetries, commonly used jargon, etc
- meson and baryon octets and baryon decuplet
- SU(3) flavor-symmetry
- discovery of the Ω and the $\phi(1020)$
- OZI rule and the need for something new
- Special topic
- Dalitz plots
- $\omega \rightarrow \pi^{+} \pi \pi^{0}$ Dalitz plot
- $\mathrm{D} \rightarrow \mathrm{K} \rho^{0} \rightarrow \mathrm{~K}^{+} \pi^{-}$Dalitz plot
- $D \rightarrow K^{*} \pi^{+} \rightarrow K \pi^{+} \pi^{-}$

Standard Model of Particle Physics pre 2012

$S U(3)_{\text {color }} \otimes S U(2)_{\text {weak }} \otimes U(1)_{E M}$

July 4 ${ }^{\text {th }}$, 2012: Higgs is discovered at CERN

We have been there before

1935: particle physics

Matter

Forces

Search for Yukawa’s pion

Cosmic rays: Nature’s accelerator lab

High energy proton from outer space

© L.Bret / Novapix /ASPERA

1936μ, not π is discovered

Phys Rev 50, 263 (1936)

Cloud Chamber Observations of Cosmic Rays at 4300 Meters Elevation and Near Sea-Level

Carl D. Anderson and Seth H. Neddermeyer, Norman Bridge Laboratory of Physics, California Institute of Technology (Received June 9, 1936)

Phys Rev 51, 884 (1937)
Note on the Nature of Cosmic-Ray Particles
Seth H. Neddermeyer and Carl D. Anderson California Institute of Technology, Pasadena, California
(Received March 30, 1937)

Anderson-Neddermeyer cloud chamber

Energy loss in 1 cm of platinum.
from (anomalous) ionization density range \& momentum: $\mu \approx 130 \mathrm{~m}_{e}$

Cloud chambers

"improved" π-meson search technique

Yukawa's π finally discovered in 1947

But, at the same time (1947).....

Mt. Pic Du Midi, 3000 m

George Rochester

Clifford Butler

"V" Particles \leqslant totally unexpected

Nature 160, 855 (1947)
Dec 20, 1947

\& K^{+}mesons (also not expected)

1949

T.D. Lee \& C.N. Yang PRL 104, 254 (1956) $\theta^{+}=\tau^{+}$(now $=K^{+}$meson) \& parity is violated in weak decays

$\pi^{0} \rightarrow Y Y$ discovery

Evidence for the Production of Neutral Mesons by Photons*
J. Stelnberger, W. K. H. Panofsky, and J. Steller

Radiation Laboratory, Depariment of Physics, University of California, Berkeley, Culiforniu (Received April 28, 1950)

Major puzzle

The $\mathrm{V}^{0}, \theta^{ \pm}$and $\tau^{ \pm}$particles are made by strong interactions but live a long time and, so, must decay by weak interactions.

1952: Pais proposes a new Quantum Number

\rightarrow for neutron/proton/ π ("old particles") this new $\mathrm{QN}=0$
\rightarrow for $\Lambda^{0} / K^{0} \ldots$ ("new particles") the new $\mathrm{QN}=+1$
Pais' principle of "evenness:"
-Strong interactions: only even changes in the new QN are allowed
-Weak Interactions: odd changes in the new QN are okay
Unambiguous prediction: the new particles are always produced in pairs

$$
\begin{aligned}
& \text { e.g.: } \pi^{-} p \rightarrow K^{0} \Lambda^{0} \quad \Delta(\text { new } Q N)=2 \leftarrow \text { allowed } \\
& \pi^{-} p \rightarrow \pi^{0} \Lambda^{0} \quad \Delta(\text { new } Q N)=1 \leftarrow \text { not allowed }
\end{aligned}
$$

1953: The Cosmotron

3.3 GeV proton accelerator at Brookhaven Lab (near NYC)

This produced the new particles under controlled conditions

"New" particles are produced in pairs

Fig. 1. Case C. Diffusion cloud-chamber photograph of two neutral V particles (a) and (b), whose lines of flight are almost colinear. (a) is believed to be a Λ^{0} decaying into a proton (1a) and a negative π meson (2a). Tracks $1 a$ and $2 a$ practically coincide in the right view. (b) is probably a ϑ^{0} decaying into π^{+}(1b) and $\pi^{-}(2 b)$.

Fig. 2. Case D. Photograph of a $1.5-\mathrm{Bev} \pi^{-}$producing two neutral V particles in a collision with a proton. Tracks 1a and 2a, believed to be proton and π^{-}, respectively, are the decay products of a Λ^{0}. A ϑ^{0} is probably seen to decay into $\pi^{+}(1 \mathrm{~b})$ and $\pi^{-}(2 \mathrm{~b})$. Because of the rather "foggy" quality of this picture tracks 1 b , 2 a , and 2 b have been retouched for better reproduction.

1955: Pais \& Gell-Mann

> Revised Pais' original idea:
\rightarrow for neutron/proton/ π the new $\mathrm{QN}=0$
\rightarrow for $\mathrm{K}^{0} / \mathrm{K}^{+} \ldots$ the new $\mathrm{QN}=+1$
\rightarrow for $\Lambda^{0} / \Sigma^{+/-/ 0} \ldots$ the new $\mathrm{QN}=-1$
Gave the ene ava name: Strangeness
-Strong interactions conserve strangeness
-Weak Interactions do not conserve strangeness

Birth of High Energy Physics

High energy: Sufficient energy to produce Strange particles

Units, notation, important quantum numbers

Units

In this class: $\hbar=c=1$
All quantities are expressed in MeV (or GeV)
[distance] unit $\Rightarrow \mathrm{MeV}^{-1}$
[time] unit $\quad \Rightarrow \mathrm{MeV}^{-1}$
to convert back to ordinary units :

$$
\begin{aligned}
& {[\text { distance }]=\frac{\hbar c}{1 \mathrm{MeV}}=197 \mathrm{fm}=1.97 \times 10^{-13} \mathrm{~m}} \\
& {[\text { time }]=\frac{[\text { distance }]}{c}=\frac{\hbar}{1 \mathrm{MeV}}=6.58 \times 10^{-22} \mathrm{sec}}
\end{aligned}
$$

nuclear force range $\approx 1.4 \mathrm{fm}$

$$
=\frac{1.4}{197 \mathrm{MeV}}=\frac{1}{140 \mathrm{MeV}} \approx 1 / 7 \mathrm{~m}_{\text {proton }}
$$

Spectroscopic Notation

$J^{\text {PC }}$ quantum numbers

$$
\begin{aligned}
& \vec{S}=\vec{S}_{1}+\vec{S}_{2} \\
& \vec{J}=\vec{L}+\vec{S}
\end{aligned} \Longleftrightarrow \begin{aligned}
& \mathrm{S}=1 \rightarrow \text { triplet of state } \\
& \mathrm{S}=0 \rightarrow \text { singlet }
\end{aligned}
$$

$$
\begin{aligned}
& \text { radial q.n. } n_{r}^{2 S+1} L_{J} \\
& \begin{array}{l}
L=0: \\
L=1: \\
\\
L=2:
\end{array} \\
& \hline
\end{aligned}
$$

Important Quantum numbers

Important Quantum numbers

Parity

- A parity transformation, P, inverts every spatial coordinate: $P(t, \mathrm{x})=(t,-\mathrm{x})$ $P^{2}=I$, and therefore the eigenvalues of P are ± 1.
- Ordinary vector $\mathbf{v} . P(\mathrm{v})=-\mathrm{v}$.
- Scalar from $\mathbf{v}: s=\mathbf{v} \cdot \mathbf{v}$
$P(s)=P(\mathbf{v} \cdot \mathbf{v})=(-\mathbf{v}) \cdot(-\mathbf{v})=\mathbf{v} \cdot \mathbf{v}=+s$
- Cross product of two vectors: $\mathbf{a}=\mathbf{v} \times \mathbf{w}$ $P(\mathbf{a})=P(\mathbf{v} \times \mathbf{w})=(-\mathbf{v}) \times(-\mathbf{w})=\mathbf{v} \times \mathbf{w}=+\mathbf{a}$
- Scalar from \mathbf{a} and $\mathbf{v}: p=\mathbf{a} \cdot \mathbf{v}$
$P(p)=P(\mathbf{a} \cdot \mathbf{v})=(+\mathbf{a}) \cdot(-\mathbf{v})=-\mathbf{a} \cdot \mathbf{v}=-p$

Scalar	$P(s)=+s$
Pseudoscalar	$P(p)=-p$
Vector	$P(\mathbf{v})=-\mathbf{v}$
Pseudovector	$P(\mathbf{a})=+\mathbf{a}$

Slide copied from Diego Bettoni

Parity in Physical Systems

- Two-body systems have parity $p_{A} p_{B}(-1)^{\ell}$
$P \phi(12)=p_{1} p_{2}(-1)^{\ell} \phi(12)$
- Intrinsically fermions and antifermions have opposite parity Bound states like positronium $e^{+} e^{-}$and mesons $q \bar{q}$ have parity of $(-1)^{\ell+1}$.
- Photons have a parity of (-1), and this underlies the $\Delta \ell= \pm 1$ selection rule in atomic transitions.
- Note that parity is a multiplicative quantum number.

This is true for all discrete symmetries.
Continuous symmetries have additive quantum numbers.

Charge Conjugation I

- The charge conjugation operator, C, converts a particle to its antiparticle. $C|p\rangle=|\bar{p}\rangle$
- In particular, C reverses every internal quantum number (e.g. charge, baryon/lepton number, strangeness, etc.).
- $C^{2}=I$ implies that the only allowed eigenvalues of C are ± 1.
- Unlike parity, very few particles are C eigenstates.

Only particles that are their own antiparticles $\left(\pi^{0}, \eta, \gamma\right)$ are C eigenstates.
For example,
$C\left|\pi^{+}\right\rangle=\left|\pi^{-}\right\rangle$
$C|\gamma\rangle=-|\gamma\rangle$

Charge Conjugation II

- The photon has a $C=-1 \quad\left(A_{\mu} \leftrightarrow-A_{\mu}\right.$ when $\left.q \leftrightarrow-q\right)$
- $f \bar{f}$ bound states have $C=(-1)^{\ell+s}$
- Charge conjugation is respected by both the strong and electromagnetic interactions.
- Example: the $\pi^{0}(\ell=s=0 \Rightarrow C=+1)$ can decay into 2γ but not 3γ

$$
\begin{gathered}
C|n \gamma\rangle=(-1)^{n}|\gamma\rangle \\
C\left|\pi^{0}\right\rangle=\left|\pi^{0}\right\rangle
\end{gathered}
$$

$\pi^{0} \rightarrow 2 \gamma$ is allowed (and observed)
$\pi^{0} \rightarrow 2 \gamma$ is not allowed (and not observed $<3.1 \times 10^{-8}$)

Isospin

$$
\begin{aligned}
& m_{p}=938.27 \mathrm{MeV} \quad m_{n}=939.57 \mathrm{MeV} \\
& m_{p} \approx m_{n}
\end{aligned}
$$

Heisenberg (1932):

Proton and neutron considered as different charge substates of one particle, the Nucleon.
A nucleon is ascribed a quantum number, isospin, conserved in the strong interaction, not conserved in electromagnetic interactions.
Nucleon is assigned isospin $I=\frac{1}{2}$

$$
\begin{array}{ll}
I_{3}=+\frac{1}{2} & p \\
I_{3}=-\frac{1}{2} & n
\end{array}
$$

$$
\frac{Q}{e}=\frac{1}{2}+I_{3}
$$

The nucleon has an internal degree of freedom with two allowed states (the proton and the neutron) which are not distinguished by the nuclear force.
Let us write the nucleon states as $\left|I, I_{3}\right\rangle$

$$
|p|=\left|\frac{1}{2}, \frac{1}{2}\right\rangle \quad|n|=\left|\frac{1}{2},-\frac{1}{2}\right\rangle
$$

For a two-nucleon system we have therefore:
Triplet
(symmetric) $\quad\left\{\begin{array}{l}\chi(1,1)=\left|\frac{1}{2}, \frac{1}{2}\right\rangle\left|\frac{1}{2}, \frac{1}{2}\right\rangle \\ \left.\chi(1,0)=\frac{1}{\sqrt{2}}\left|\frac{1}{2}, \frac{1}{2}\right\rangle\left|\frac{1}{2},-\frac{1}{2}\right\rangle+\left|\frac{1}{2},-\frac{1}{2}\right\rangle\left|\frac{1}{2}, \frac{1}{2}\right\rangle\right) \\ \chi(1,-1)=\left|\frac{1}{2},-\frac{1}{2}\right\rangle\left|\frac{1}{2},-\frac{1}{2}\right\rangle\end{array}\right.$

Singlet (antisymmetric)

$$
\left\{\chi(0,0)=\frac{1}{\sqrt{2}}\left(\left|\frac{1}{2}, \frac{1}{2}\right\rangle\left|\frac{1}{2},-\frac{1}{2}\right\rangle-\left|\frac{1}{2},-\frac{1}{2}\right\rangle\left|\frac{1}{2}, \frac{1}{2}\right\rangle\right)\right.
$$

Example: deuteron (S-wave pn bound state)

$$
\psi=\phi\left(\begin{array}{c}
(\text { spazio }) \times \alpha(\text { spin }) \times \chi(\text { isospin }) \\
\begin{array}{c}
(-1)^{l}=+1 \quad(-1)^{S+1}=+1 \\
(l=0) \quad(S=1)
\end{array} \quad(-1)^{I+1}
\end{array}\right.
$$

ψ is the wave function for two identical fermions (two nucleons), hence it must be globally antisymmetric. This implies that the deuteron must have zero isospin:

$$
I_{d}=0
$$

As an example let us consider the two reactions

$$
\begin{aligned}
& p+p \rightarrow \pi^{+}+d \\
& p+n \rightarrow \pi^{0}+d
\end{aligned} \quad\left(I_{\pi}=1\right)
$$

Since $I_{d}=0$ in each case the final state has isospin 1.
Let us now consider the initial states:

The cross section

$$
\begin{aligned}
& p p=|1,1\rangle \\
& n p=\frac{1}{\sqrt{2}}(|1,0\rangle-|0,0\rangle)
\end{aligned}
$$

$$
\left.\sigma \propto \mid \text { ampiezza }\left.\right|^{2} \approx \sum_{I}\left|\left\langle I^{\prime}, I_{3}^{\prime}\right| A\right| I, I_{3}\right\rangle\left.\right|^{2}
$$

Isospin conservation implies

$$
I=I^{\prime}=1 \quad I_{3}=I_{3}^{\prime}
$$

The reaction $n p \rightarrow \pi^{0} d$ proceeds with probability $\left(\frac{1}{\sqrt{2}}\right)^{2}$ with respect to $p p \rightarrow \pi^{+} d$ hence:

$$
\frac{\sigma\left(p p \rightarrow \pi^{+} d\right)}{\sigma\left(n p \rightarrow \pi^{0} d\right)}=2
$$

Isospin in the $\pi \mathrm{N}$ System

The π meson exists in three charge states of roughly the same mass:

$$
\begin{aligned}
m_{\pi^{ \pm}} & =139.57 \mathrm{MeV} \\
m_{\pi^{0}} & =134.98 \mathrm{MeV}
\end{aligned}
$$

Consequently it is assigned $I_{\pi}=1$, with the charge given by $Q / e=I_{3}$.

$$
\left|\pi^{+}\right\rangle=|1,1\rangle \quad\left|\pi^{0}\right\rangle=|1,0\rangle \quad\left|\pi^{-}\right\rangle=|1,-1\rangle
$$

For the $\pi B=0: \quad \frac{Q}{e}=I_{3}+\frac{B}{2}$

For the $\pi \mathrm{N}$ system the total isospin can be either $\mathrm{I}=1 / 2$ or $\mathrm{I}=3 / 2$

$$
\begin{aligned}
\left|\pi^{+} n\right\rangle & =|1,1\rangle \times\left|\frac{1}{2}, \frac{1}{2}\right\rangle \\
& =\sqrt{\frac{1}{3}}\left|\frac{3}{2}, \frac{1}{2}\right\rangle+\sqrt{\frac{2}{3}}\left|\frac{1}{2}, \frac{1}{2}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
\left|\frac{3}{2}, \frac{1}{2}\right\rangle & =\sqrt{\frac{1}{3}}\left|\pi^{+} n\right\rangle+\sqrt{\frac{2}{3}}\left|\pi^{0} p\right\rangle \\
& =\sqrt{\frac{1}{3}}|1,1\rangle \times\left|\frac{1}{2},-\frac{1}{2}\right\rangle+\sqrt{\frac{2}{3}}|1,0\rangle \times\left|\frac{1}{2}, \frac{1}{2}\right\rangle
\end{aligned}
$$

(1) $\pi^{+} p \rightarrow \pi^{+} p$
(2) $\left.\pi^{-} p \rightarrow \pi^{-} p\right\}$

Elastic scattering
(3) $\pi^{-} p \rightarrow \pi^{0} n \quad$ Charge exchange

$$
\left.\begin{array}{ll}
\quad \sigma \propto|\langle f| H| i\rangle\left.\right|^{2}=\left|M_{i f}\right|^{2} & \mathrm{H}=\left\{\begin{array}{l}
\mathrm{H}_{1} \text { if it acts between states of } l=1 / 2 \\
\mathrm{H}_{3} \text { ifit acts between states of } l=3 / 2
\end{array}\right. \\
\text { let } \quad M_{1}=\left\langle I=\frac{1}{2}\right| H_{1}\left|I=\frac{1}{2}\right\rangle
\end{array} \quad \begin{array}{ll}
\quad M_{3}=\left\langle I=\frac{3}{2}\right| H_{3}\left|I=\frac{3}{2}\right\rangle
\end{array}\right] \begin{array}{ll}
\sigma_{1}=K\left|M_{3}\right|^{2} \\
|i\rangle=|f\rangle=\sqrt{\frac{1}{3}}\left|\frac{3}{2},-\frac{1}{2}\right\rangle-\sqrt{\frac{2}{3}}\left|\frac{1}{2},-\frac{1}{2}\right\rangle & \sigma_{1}: \sigma_{2}: \sigma_{3}= \\
\left.\sigma_{2}=K\left|\langle f|\left(H_{1}+H_{3}\right)\right| i\right\rangle\left.\right|^{2} & \left|M_{3}\right|^{2}: \frac{1}{9}\left|M_{3}+2 M_{1}\right|^{2}: \frac{2}{9}\left|M_{3}-M_{1}\right|^{2} \\
\sigma_{2}=K\left|\frac{1}{3} M_{3}+\frac{2}{3} M_{1}\right|^{2} &
\end{array}
$$

(1) $\quad \sigma_{1}=K\left|M_{3}\right|^{2}$
(2)
(3) $|i\rangle=\sqrt{\frac{1}{3}}\left|\frac{3}{2},-\frac{1}{2}\right\rangle-\sqrt{\frac{2}{3}}\left|\frac{1}{2},-\frac{1}{2}\right\rangle$

$$
|f\rangle=\sqrt{\frac{2}{3}}\left|\frac{3}{2},-\frac{1}{2}\right\rangle+\sqrt{\frac{1}{3}}\left|\frac{1}{2},-\frac{1}{2}\right\rangle
$$

$$
\begin{array}{cc}
M_{3} \gg M_{1} & \sigma_{1}: \sigma_{2}: \sigma_{3}=9: 1: 2 \\
M_{1} \gg M_{3} & \sigma_{1}: \sigma_{2}: \sigma_{3}=0: 2: 1
\end{array}
$$

$$
\sigma_{3}=K\left|\sqrt{\frac{2}{9}} M_{3}-\sqrt{\frac{2}{9}} M_{1}\right|^{2}
$$

$\pi^{ \pm} p$ Total Cross Section

$$
\begin{array}{|lll}
\Delta(1236) & \Gamma=120 \mathrm{MeV} \\
J^{P}=\frac{3^{+}}{2} & I=\frac{3}{2} & (3,3)
\end{array}
$$

$$
\sigma(E)=\frac{2 J+1}{\left(2 s_{1}+1\right)\left(2 s_{2}+1\right)} \frac{\pi}{k^{2}} \frac{\Gamma_{a b} \Gamma_{c d}}{\left(E-M_{R}\right)^{2}+\frac{\Gamma^{2}}{4}}
$$

$$
\mathrm{a}+\mathrm{b} \rightarrow \mathrm{R} \rightarrow \mathrm{c}+\mathrm{d}
$$

Slide copied from Diego Bettoni

Strangeness S

Strange particles are copiously produced in strong interactions
They have a long lifetime, typical of a weak decay.
S quantum number: strangeness conserved in strong and electromagnetic interactions, not conserved in weak interactions.
Example: $\pi^{-}+p \rightarrow \Lambda+K^{0}$

$$
\Longrightarrow p+\pi^{-} \quad \tau=2.6 \times 10^{-10} s
$$

\[

\]

$$
\text { I = } 0 \text {, because the } \Lambda \text { has no charged counterparts }
$$

\[

\]

$$
\left.\begin{array}{l}
K^{0}, K^{+} \frac{Q}{e}=I_{3}+\frac{1}{2} \tag{Gell-MannNishijima}\\
\bar{K}^{0}, K^{-}-\frac{Q}{e}=I_{3}-\frac{1}{2}
\end{array}\right\} \quad \begin{aligned}
& \frac{Q}{e}=I_{3}+\frac{B+S}{2} \\
& \mathrm{Y}=\mathrm{B}+\mathrm{S} \text { hypercharge }
\end{aligned}
$$

Using the Gell-Mann Nishijima formula strangeness is assigned together with isospin.
Example.:

$$
\begin{array}{lrl}
n, p & S=0 & I=\frac{1}{2} \\
\Lambda & S=-1 & I=0 \\
K^{0}, K^{+} & S=1 & I=\frac{1}{2} \\
K^{-}, \bar{K}^{0} & S=-1 & I=\frac{1}{2}
\end{array}
$$

Example of strangeness conservation:

\[

\]

Slide copied from Diego Bettoni

G-parity G

$$
G=C e^{i \pi I_{2}}
$$

Rotation of π around the 2 axis in isospin space followed by charge conjugation.

$$
I_{3} \xrightarrow{e^{i \pi_{2}}}-I_{3} \xrightarrow{C} I_{3}
$$

Consider an isospin state $\chi\left(I, l_{3}=0\right)$: under isospin rotations this state behaves like $Y^{0},(\theta, \varphi)$ (under rotations in ordinary space)
The rotation around the 2 axis implies:
therefore

$$
\begin{gathered}
\vartheta \rightarrow \pi-\vartheta \quad \varphi \rightarrow \pi-\varphi \\
Y_{l}^{0} \rightarrow(-1)^{l} Y_{l}^{0}
\end{gathered}
$$

$$
\chi(I, 0) \rightarrow(-1)^{I} \chi(I, 0)
$$

Example: for a nucleon-antinucleon state the effect of C is to give a factor $(-1)^{1+s}$ (just is in the case of positronium). Therefore:

$$
G|\psi(N \bar{N})\rangle=(-1)^{l+s+I}|\psi(N \bar{N})\rangle
$$

This formula has general validity, not limited to the $I_{3}=0$ case.
For the $\pi \quad G\left|\pi^{+}\right\rangle= \pm\left|\pi^{+}\right\rangle$

$$
\begin{aligned}
G\left|\pi^{-}\right\rangle & = \pm\left|\pi^{-}\right\rangle \\
G\left|\pi^{0}\right\rangle & = \pm\left|\pi^{0}\right\rangle
\end{aligned}
$$

For the $\pi^{0} \mathrm{C}=+1\left(\pi^{0} \rightarrow \gamma \gamma\right)$, the rotation gives $(-1)^{\mathrm{l}}=-1(\mathrm{l}=1)$ so that $\mathrm{G}=-1$.

$$
G_{\pi^{0}}=-1
$$

It is the practice to assign the phases so that all members of an isospin triplet have the same G-parity as the neutral member.

$$
G\left|\pi^{ \pm}\right\rangle=-\left|\pi^{\mp}\right\rangle \quad \text { with } C\left|\pi^{ \pm}\right\rangle=-\left|\pi^{\mp}\right\rangle
$$

Since the C operation reverses the sign of the baryon number B, the eigenstates of G-parity must have baryon number zero $\mathrm{B}=0$. G is a multiplicative quantum number, so for a system of $n \pi$

$$
G=(-1)^{n}
$$

$$
\begin{array}{lll}
\rho \rightarrow \pi \pi & G_{\rho}=+1 & \\
\omega \rightarrow \pi \pi \pi & G_{\omega}=-1 & \text { B.R. }=89 \% \\
\omega \rightarrow \pi \pi & G_{f}=+1 & \text { B.R. }=2.2 \%
\end{array}
$$

$$
\eta \rightarrow \gamma \gamma \quad C=+1 \text { which, with } I=0, \text { yields } G=+1 .
$$

$$
\eta \nrightarrow \pi \pi \quad \text { viola } P
$$

$$
\eta \rightarrow \pi \pi \pi \quad \text { viola } G \Rightarrow \text { e.m. }
$$

important page in PDG for this class

Figure 43.1: The sign convention is that of Wigner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley (The Theory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, Wiley, New York, 1957),
and Cohen (Tables of the Clebsch-Gordan Coefficients, North American Rockwell Science Center, Thousand Oaks, Calif, 1974).

properties of π - and K-mesons

"Particles, particles, particles."

Spin of the π^{+}

$$
\frac{d \sigma}{d \Omega}\left(p p \rightarrow \pi^{+} d\right) \leftarrow \text { compare } \rightarrow \frac{d \sigma}{d \Omega}\left(\pi^{+} d \rightarrow p p\right)
$$

D. L. Clark, A. Roberts, and R. Wilson, "Cross section for the reaction $\pi^{+} d \rightarrow p p$ and the spin of the π^{+}meson." Phys. Rev., 83, 649 (1951).
R. Durbin, H. Loar, and J. Steinberger, "The Spin of the Pion via the Reaction $\pi^{+}+$
$d \leftrightarrows p+p$." Phys. Rev., 83, 646 (1951).
R. Plano et al., "Parity of the Neutral Pion." Phys. Rev. Lett., 3, 525 (1959).

Parity of the π^{-}

\Leftarrow observed
capture occurs only Pauli-allowed' in an S-wave $J=1 \mathrm{nn}$ state is ${ }^{3} \mathrm{P}_{1}$
$J=S_{d}=1$

$$
\Rightarrow P_{\pi} P_{d}=-1 ; \quad \text { since } P_{d}=1, \quad P_{\pi}=-1
$$

W. K. H. Panofsky, R. L. Aamodt, and J. Hadley, "The Gamma-Ray Spectrum Resulting from Capture of Negative π-Mesons in Hydrogen and Deuterium." Phys. Rev., 81, 565 (1951).

Spin of $\pi^{0} \rightarrow$ Yang's theorem

C.N. Yang: \quad Spin=1 particle cannot decay to 2 photons

$$
\pi^{0} \rightarrow \gamma \gamma \Leftarrow \text { cannot be } \mathrm{S}=1
$$

Parity of $\pi^{0} \longleftarrow$ use double "Dalitz" decays

π^{0} decay modes from PDG

| Γ_{1} | 2γ |
| :--- | :--- | :--- |
| Γ_{2} | $e^{+} e^{-} \gamma \longleftarrow$ |
| Γ_{3} | γ positronium |
| Γ_{4} | $e^{+} e^{+} e^{-} e^{-} \longleftarrow 2$ "Dalitz" decays \longrightarrow Dalitz" decays $\longrightarrow \longrightarrow$$(98.823 \pm 0.034) \%$
 $(1.174 \pm 0.035) \%$
 $(1.82 \pm 0.29) \times 10^{-9}$
 $(3.34 \pm 0.16) \times 10^{-5}$ |

Phys. Rev. 98, 1355 (1955)

$\frac{d N}{d \phi}$
\propto
$+\Rightarrow 0^{+} ;-\Rightarrow 0^{-}$

$\mu^{+} \mu^{-} \leftarrow Z^{0} \leftarrow H \rightarrow Z^{* 0} \rightarrow \mu^{+} \mu^{-}$used to determine parity of the Higgs

$$
e^{+} e^{-} \leftarrow \gamma^{*} \leftarrow \pi^{0} \rightarrow \gamma^{*} \rightarrow e^{+} e^{-}
$$

Phys. Rev. Lett. 3, 525 (1959)
for this expt's acceptance: $\alpha_{\text {theory }}=0.48$

FIG. 1. A photograph of a typical double internal conversion.

FIG. 2. Plot of weighted frequency distribution of angle between planes of polarization.

Parity of the K^{-}

Resonances

The Fermi π-Nucleon resonance: $\Delta(1236)$

Total Cross Sections of Positive Pions in Hydrogen*

H. I. Anderson, E. Fermi, E. A. Long, \dagger and D. F. Nagle Institute for Nuclear Studies, University of Chicago, Chicago, Illinois
(Received January 21, 1952)

IN a previous letter, ${ }^{1}$ measurements of the total cross sections of negative pions in hydrogen were reported. In the present letter, we report on similar experiments with positive pions.

Fig. 1. Total cross sections of negative pions in hydrogen (sides of the
 isotopic spin $3 / 2$, the total cross section of negative pions should tg. The black square it the Brookhaven result and does not include the at all points be less than (8/3) π^{2}. Apparently, the experimental cross section above 150 Mev is larger than this limit, which indicates that other states contribute appreciably at these energies. Naturally, if a single state were dominant, one could expect that the cross sections would go through a maximum at an energy not far from the energy of the state involved. Unfortunately, we have not been able to push our measurements to sufficiently high energies to check on this point.

Based on these data, Fermi

predicted a $\mathrm{J}=3 / 2$; $\mathrm{I}=3 / 2$
resonance with mass just
above 1200 MeV

The $\Delta(1232)$ resonance

Breit Wigner line shape

$$
\begin{aligned}
& B W=\left|A_{B W}\right|^{2.0} \begin{array}{c}
\text { 0.8 } \\
0.6 \\
\hline
\end{array} \\
& A_{B W}=\frac{\Gamma / 2}{\left(M-M_{0}\right)-i \Gamma / 2}: \Rightarrow B W=\left|A_{B W}\right|^{2}=\frac{\Gamma^{2} / 4}{\left(M-M_{0}\right)^{2}+\Gamma^{2} / 4}
\end{aligned}
$$

Please note: This is the simplest version of many different expressions used to describe resonance line shapes. These general features are common to all forms.

Phase structure of $A_{B W}$

Argand plot
-- $A_{B W}$ moves CCW in a circle
-- rapid "phase motion" where $\left|A_{B W}\right|$ is maximum

return to the Fermi resonance: $\Delta(1232)$

Other Resonances

-- The glory days of Bubble Chambers --

Bubble chambers

Pressurize the liquid to ~10 Atm to keep it from boiling

Pass particle beam through liquid

Rapidly depressurize the liquid --it starts to boil around the track-induced ions.

Allow bubbles to grow for ~3 msec

Flash lamps; take photographs
Recompress before general boiling occurs.

Repeat
1959 Nobel physics prize
Donald Glaser 1926-2013

80-inch bubble chamber at Brookhaven

Schematic cross section of the 80 -inch liquid hydrogen bubble chamber showing major components.

80-inch bubble chamber optics

Bubble chamber event

A careful study of this photograph reveals the reaction to be $\overline{\mathrm{p}} \mathrm{p} \rightarrow \mathrm{p} \pi^{+} \mathrm{K}^{-} \pi^{-} \pi^{0} \mathrm{~K}^{0} \overline{\mathbf{n}}$, where

- the slow proton is identifed by its heavier ionisation,
- the K^{0} subsequently decays into a pair of charged pions,
- the antineutron annihilates with a proton a short distance downstream from the primary interaction, to produce three charged pions,
- the neutral pion decays into two photons, which (unusually for a hydrogen chamber) both convert into $\mathrm{e}^{+} \mathrm{e}^{-}$pairs,
- (external particle detectors were used to identify the charged kaon).

Lots and lots of pictures

-- most of them uninteresting --

First large-scale applications of digital

 computers.

On many University campuses, the most powerful computers were in the HEP lab.

$K^{-}-\mathrm{p} \rightarrow K^{0} \Xi^{0} \pi^{+} \pi^{-}$event

Invariant mass

Einstein rest-mass vs energy relation

$$
\begin{gathered}
\mathrm{M}_{\mathrm{A}}=\sqrt{p_{\mathrm{A}}^{2}}=\mathrm{E}_{\mathrm{A}}^{2}-\left|\overrightarrow{\mathrm{p}}_{\mathrm{A}}\right|^{2} \\
+
\end{gathered}
$$

energy-momentum conservation $p_{\mathrm{A}}=p_{\mathrm{b}}+p_{\mathrm{c}}$
"invariant mass" of particles a and b

$$
\mathrm{M}_{\mathrm{A}}=\sqrt{\left(p_{\mathrm{b}}+p_{\mathrm{c}}\right)^{2}}=\sqrt{\left(\mathrm{E}_{\mathrm{b}}+\mathrm{E}_{\mathrm{c}}\right)^{2}-\left|\overrightarrow{\mathrm{p}}_{\mathrm{b}}+\overrightarrow{\mathrm{p}}_{\mathrm{c}}\right|^{2}}
$$

$\mathrm{S}=-1$ resonances

Phys.Rev.Lett. 5, 115 (1960)

$$
K^{-} p \rightarrow \Lambda^{0} \pi^{+} \pi^{-} \Leftarrow P_{K}=1.15 \mathrm{GeV}
$$

"bachelor" π

$$
M_{Y^{*}}^{2}=E_{c m}^{2}+m_{\pi}^{2}-2 E_{c m} E_{\pi-\text { bachelor }}
$$

$Y^{*}(1385) \rightarrow \wedge \pi$

θ

S=-2 resonance: $\Xi *(1530) \rightarrow \Xi \pi$

Meson resonance: $K^{*}(892) \rightarrow K \pi$

Phys.Rev.Lett. 6, 120 (1961)

$$
K^{-} p \rightarrow \bar{K}^{0} \pi^{-} p \Leftarrow P_{K}=1.15 \mathrm{GeV}
$$

Number of events

Meson resonance: $\rho(770) \rightarrow \pi \pi$

Phys.Rev.Lett. 6, 124 (1961)

$$
\begin{aligned}
& \pi^{-} p \rightarrow \pi^{-} \pi^{0} p \\
& \pi^{-} p \rightarrow \pi^{+} \pi^{-} n
\end{aligned} \Leftarrow P_{\pi}=1.89 \mathrm{GeV}
$$

Table I. Ratios of final states.

	$I=0$	$I=1$	$I=2$	Experiment $(\Delta \leqslant 400 \mathrm{Mev} / c)$	
$\pi^{-\pi^{+} n}$	2	2	$2 / 9$	1.7 ± 0.3	
$\pi^{-} \pi^{0} p$	0	1	1	1	
$\pi^{0} \pi^{0} n$	1	0	$4 / 9$	$<0.25 \pm 0.25$	
I=1 is favored					

$M_{\rho}=775.5 \pm 0.4 \mathrm{MeV}$
$\Gamma_{\rho}=149 \pm 1 \mathrm{MeV}$
$J^{P}=1^{-}$
$I=1$

Meson resonance: $\omega(782) \rightarrow \pi^{+} \pi^{-} \pi^{0}$

Phys.Rev.Lett. 7, 126 (1961)

$$
\bar{p} p \rightarrow \pi^{+} \pi^{+} \pi^{-} \pi^{-} \pi^{0} \Leftarrow P_{\bar{p}}=1.61 \mathrm{GeV}
$$

$$
\begin{aligned}
& M_{\omega}=782.6 \pm 0.1 \mathrm{MeV} \\
& \Gamma_{\omega}=8.5 \pm 0.1 \mathrm{MeV} \\
& J^{P}=1^{-} \\
& I=0
\end{aligned}
$$

Quantum numbers of the $\rho \& \omega$

ρ meson quantum numbers

Known: $\rho^{0} \rightarrow \pi^{+} \pi^{-}$and Ispin=1
$J^{P}:\left|\rho^{0}\right\rangle=\frac{1}{\sqrt{2}}\left[\left|\pi^{+}\right\rangle\left|\pi^{-}\right\rangle-\left|\pi^{-}\right\rangle\left|\pi^{+}\right\rangle\right] \Leftarrow$ asymmetric in $\pi^{+} \leftrightarrow \pi^{-}$ to preserve Bose statistics: need asymmetry in parity
$\Rightarrow \pi^{+} \pi^{-}$must be in a P-wave, $P=-1 \& J^{P}=1^{-}$
$C: \quad C\left|\rho^{0}\right\rangle=\frac{1}{\sqrt{2}}\left[C\left|\pi^{+}\right\rangle\left|\pi^{-}\right\rangle-C\left|\pi^{-}\right\rangle\left|\pi^{+}\right\rangle\right]=\frac{1}{\sqrt{2}}\left[\left|\pi^{-}\right\rangle\left|\pi^{+}\right\rangle-\left|\pi^{+}\right\rangle\left|\pi^{-}\right\rangle\right]=-\left|\rho^{0}\right\rangle$

$$
\Rightarrow C=-1
$$

$\left(\rho^{+}\right) \quad\left(\rho^{+}\right) \quad\left(\rho^{+}\right) \quad \mathrm{JCC}^{\mathrm{PC}}=\mathbf{1}^{--}$

ω meson quantum numbers

Known: $\omega^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ and Ispin=1

$G: G|n \pi\rangle=(-1)^{n}|n \pi\rangle$ for $\omega \rightarrow 3 \pi, n=3 \& G_{\bar{\sigma}}=-1$
$C: \quad G|\omega\rangle=C_{\omega} \omega^{i \pi I_{2}}|\omega\rangle=-|\omega\rangle$ for $I=0, e^{i \pi I_{2}}=1 \Rightarrow C_{\omega}=-1$

$$
\mathrm{JPC}^{\mathrm{PC}}=\mathbf{1}^{--}
$$

What about $K^{*}(892)$ quantum numbers?

-- examine the Dalitz plot --

What about K^{*} (892) quantum numbers?

-- examine the Dalitz plot --

What about K^{*} (892) quantum numbers?

-- examine the Dalitz plot --

Discovery of the η meson (1961)

Phys.Rev.Lett. 7, 131 (1961)

η is also seen in $\eta \rightarrow \gamma \gamma$ decay mode

Elementary particle "Zoo" in 1963

Two "classes" of hadrons "non-strange:" n, p, p, r,... "strange:" L, S, K, K*, ...

Tables of Elementary Particles and Resonant States

Matts Roos

Nordisk: Institut for Teoretisk Atomfysik, Copenhagen, Denmark
\leftarrow "wallet cards"
baryon resonances
tates

Meson and Baryon Octets

resonances

$J^{\mathrm{P}}=1^{\text {² }}$ vector meson octet

$J^{\mathrm{P}}=3 / \mathbf{2}^{+}$baryon "decuplet"

History:
(sub-atomic particles)

1932: proton \& neutron ..all we need???

1937: muon
"Who ordered that?"

1947: pion
predicted in 1935

1950's: $\pi, K, \Lambda, . .$.
"Had I foreseen that, I would have gone into botany" - Fermi

Summary (lecture 1)

- The (expected) discovery of the π-meson and the (unexpected) discovery of the $K=m e s o n ~ \& ~ \wedge ~ b a r y o n ~ i n ~ 1947 ~ m a r k e d ~ t h e ~$ beginning of hadron physics.
- The fact that K-mesons were produced in association with Λ-baryons led to the discovery of Strangeness, the $1^{\text {st }}$ flavor. S is conserved in strong and electro-magnetic, but not in weak interactions.
- Experiments showed that the spin and parity of the $\pi-$, K- and mesons are all $\mathrm{J}^{\mathrm{P}}=0^{-}$.
- A matching set of meson resonances with $J^{P}=1^{-}$., the $\rho-, K^{*}$ - and ω-mesons, were found in bubble chamber experiments.
- A set of spin=3/2 baryon resonances, the $\Delta(1232), Y^{*}(1385)$ (now called the $\Sigma(1385))$ and $\equiv(1530)$ was also discovered.
- Mesons come in octets; baryons come in octets and decuplets.

some discussion items/questions

Show that for $f \bar{f}$ states, $C=(-1)^{L+S}$, where f is a fermion.
Prove Yang's theorem.
Why would the decay $\eta(547) \rightarrow \pi \pi$ violate parity conservation?
Although the $\eta(547)$ mass is well above $3 m_{\pi}$, the partial decay width $\Gamma(\eta \rightarrow 3 \pi)$ is only $\approx 1 \mathrm{keV}$, which means it is not an allowed strong Interaction process. Why is $\eta \rightarrow 3 \pi$ not an allowed strong Interaction process?

Why doesn't the $\rho(770)^{0}$ decay to $\pi^{0} \pi^{0}$?
Why doesn't the $\omega(782)^{0}$ decay to $\pi^{0} \pi^{0} \pi^{0}$?

