Dalitz Plots I

A powerful method for visualizing the dynamics in three-body particle systems

Stephen Lars Olsen

Graphics from Brian Lindquist (SLAC)

Fermi's Golden Rule for 3-body decays

$$d\Gamma = \frac{1}{(2\pi)^3} \frac{1}{8M} \overline{|\mathcal{M}|^2} \, dE_1 \, dE_3$$
$$= \frac{1}{(2\pi)^3} \frac{1}{32M^3} \, \overline{|\mathcal{M}|^2} \, dm_{12}^2 \, dm_{23}^2$$

if
$$\left|\mathcal{M}\right|^2 = 0$$
, i.e., no dynamics,
 $\frac{dX}{dm_{12}^2 dm_{23}^2} = \text{constant}$

Old-style versus Modern style

here symmetries are more obvious

Resonance with spin

If the resonance has spin S, and M, 1, 2 and 3 are spin-0, then decay amplitude is proportional to Legendre polynomial:

 $A \propto A_{RBW}(m_{ab})P_S(\cos\theta)$

Resonance spin

Constructive interference

Destructive interference

crossing resonances

$D^0 \to K_S \pi^+ \pi^-$ from Belle

Invariant mass histograms don't give a clue about the physics

$D^0 \to K_S \pi^+ \pi^-$ from Belle

Details

Resonance	Our fit		
	Amplitude	Phase, deg	Br, %
$K^*(892)^-\pi^+$	1.643 ± 0.025	133.8 ± 1.3	60.7 ± 1.8
$K_s \rho^0$	1.0 (fixed)	0 (fixed)	22.5 ± 0.7
$K^*(892)^+\pi^-$	$(10.6 \pm 1.1) \times 10^{-2}$	315 ± 6	0.28 ± 0.06
$K_s \omega$	$(13.5 \pm 2.5) \times 10^{-3}$	104 ± 11	0.14 ± 0.05
$K_s f_0(980)$	0.413 ± 0.014	199.6 ± 2.5	5.3 ± 0.4
$K_s f_0(1370)$	0.52 ± 0.08	42.7 ± 6.6	0.69 ± 0.21
$K_s f_2(1270)$	0.70 ± 0.05	340.0 ± 3.6	0.22 ± 0.03
$K_0^*(1430)^-\pi^+$	2.00 ± 0.09	-5.6 ± 2.8	5.5 ± 0.5
$K_2^*(1430)^-\pi^+$	1.13 ± 0.06	312.4 ± 3.3	3.6 ± 0.4
$K^*(1680)^-\pi^+$	0.91 ± 0.16	197 ± 14	0.34 ± 0.12
$K_s\sigma$	0.93 ± 0.14	192.2 ± 7.8	4.1 ± 1.2
non-resonant	4.29 ± 0.32	311.6 ± 4.3	0.41 ± 0.06

$$p\overline{p} \rightarrow K^{\pm}\pi^{\mp}(K^0)$$
 at rest

Dalitz plot symmetries

only Ispin=1 allowed

C.Amsler et al., EPJC 23 (2002) 29

Interpretation

Example:

$$\begin{split}
\omega \to \pi^{+}\pi^{-}\pi^{0} \\
I^{+} \to 0^{-}0^{-}0^{-} \\
I^{-}_{x} I^{-}_{y} I^{-}_{z} \\
I^{0}_{x} I^{0}_{y} I^{0}_{z}
\end{split} = \varepsilon_{ijk}I_{i}I_{j}I_{k} \iff j \text{ asymmetric} \\
\end{split}$$
Phys. R

available vectors: $\vec{p}_+, \vec{p}_-, \vec{p}_0; \vec{p}_+ + \vec{p}_- + \vec{p}_0 = 0$ axial vector: $\vec{q} = \vec{p}_+ \times \vec{p}_- = \vec{p}_- \times \vec{p}_0 = \vec{p}_0 \times \vec{p}_+$

$$J^{p} = 1^{-} = (-1)^{3} ?$$

? must be \vec{q} : \Leftarrow to get $J = 1$ and $P = -1$

 $\therefore M \propto \vec{p}_{+} \times \vec{p}_{-} \begin{cases} \max \text{ at } \vec{p}_{+} = \vec{p}_{-} = \vec{p}_{0} :\Leftarrow \text{ center} \\ 0 \text{ when any } |\vec{p}| = 0 :\Leftarrow \text{ boundary} \end{cases}$

Data rules out 1⁺ and 0⁻

simple non-trival case: $P \rightarrow a R; R \rightarrow b c$

3-body decay $P \rightarrow aR; R \rightarrow b+c$

where P has $J^{P}=0^{-}$ and a, b & c are pions or kaons

Fermi's Golden Rule

$$d\Gamma(m_{ab}^2, m_{ac}^2) = \frac{1}{(2\pi)^3 32\sqrt{m_p^3}} \left| \mathcal{M} \right|^2 dm_{ab}^2 dm_{ac}^2$$

$$\left| \mathcal{M} \right|^2 = \left| BW \times |10\rangle \right|^2 = \left| \frac{i\sqrt{m_{bc}\Gamma_R}}{(m_R^2 - m_{bd}^2) - im_0\Gamma_0} Y_1^0(\cos\theta) \right|^2$$

$D \rightarrow K\rho \quad \rho \rightarrow \pi^+\pi^-$

 $D \rightarrow K^*\pi^-; K^* \rightarrow K^-\pi^+$

Some Dalitz Plot relations

 $\vec{p}_a + \vec{p}_b + \vec{p}_c = 0$ $E_a + E_b + E_c = M_p$

$$M_p^2 + m_a^2 + m_b^2 + m_c^2 = m_{ab}^2 + m_{ac}^2 + m_{bc}^2$$

Boundary corresponds to
$$|\cos^2\theta|=1$$

$$1 = \left[\frac{m_R}{4 \mid \vec{p}_a^* \mid\mid \vec{q} \mid m_P} \left[(m_{ac}^2 - m_{ab}^2) + \frac{(m_P^2 - m_a^2)(m_b^2 - m_c^2)}{m_R^2} \right] \right]^2 \Rightarrow$$

$$m_{ac\min}^{2 \max} = \frac{1}{2} \left[m_P^2 + m_a^2 + m_b^2 + m_c^2 - m_{ac}^2 + \sqrt{1 - ((m_b + m_c)/m_{bc})^2} \times \sqrt{m_P^2 - (m_a + m_b + m_c)^2} \times \sqrt{m_P^2 - (m_a - m_b - m_c)^2} \right]$$

questions/items for discussion

Check the formulae in the preceding slides
 -- report errors to me