Study of $D^0 \to \pi^+\pi^-\pi^+\pi^-$ @ 3770

Xinyu Shan^{1,2}, Yue Pan^{1,2}, Haiping Peng^{1,2}

¹University of Science and Technology of China ²State Key Laboratory of Particle Detection and Electronics

Outline

- ➢ Motivation
- ➢Data Set
- Event Selection
- Background Study
- Summary and Next to do

Motivation

- Study of $D^0 \to \pi^+ \pi^- \pi^+ \pi^-$ can provide important input for the determination of CKM unitarity triangle angle γ in $B^{\pm} \to DK^{\pm}$ process.
 - Global F_+ can be got from model-independent/dependent method.
 - Binning F_+ or c_i , s_i can be tried.

CLEO-c Phys. Lett. B747 (2015)

JHEP05(2017)143

> CLEO-c and FOCUS have studied the resonance structure of $D^0 \rightarrow \pi^+\pi^-\pi^+\pi^-$, more precise result can be got by using the large and clean D^0 sample in BESIII.

Data Set

➢ Boss Version: 6.6.4.p02

> Data: $\psi(3770)$ data (2010 & 2011, 2.92 fb^{-1})

Generic MC (round03 & round04):

•	77M	$e^+e^- \rightarrow \psi(3770) \rightarrow D^0\overline{D}^0$ (QCMC)	10.8X
٠	91M	$e^+e^- \rightarrow \psi(3770) \rightarrow D^+D^-$	10.8X
٠	15M	$e^+e^- \rightarrow \psi(3770) \rightarrow nonD\overline{D}$	10.8X
•	102M	$e^+e^- \rightarrow \gamma_{ISR} \psi(2S)$	10.8X
•	33M	$e^+e^- \rightarrow \gamma_{ISR} J/\psi$	10.8X
•	366M	$e^+e^- \rightarrow q\bar{q}$	7.3X
•	90M	$e^+e^- \rightarrow \tau^+\tau^-$	10.8X

Event Selection

Three Flavor Tag modes: $\overline{D}{}^0 o K^+\pi^-$, $K^+\pi^-\pi^0$, $K^+\pi^+\pi^-\pi^-$

➢ Good charged tracks:

 $|Rz| \le 10$ cm, $|Rxy| \le 1$ cm, $|\cos\theta| \le 0.93$;

Good Photons:

- Barrel : $E_{\gamma} > 0.025 \text{GeV}$, $|\cos\theta| \le 0.8$
- Endcap : $E_{\gamma} > 0.05 \text{GeV}, 0.84 \le |\cos \theta| \le 0.92$
- Time cut: $0 \le T \le 14$ (in unit of 50 ns);
- |dang|> 20°;

> PID (SimplePID Package):

- Use dE/dx and TOF
- Pion: prob(π) > prob(K);
- Kaon: prob(K) > prob(π);

$\succ \pi^0$ Candidates :

0.115<M(γγ)<0.150 GeV/c², X²_{1c}<20;

> Tag D Reconstruction:

•
$$\Delta E = E_D - E_{beam}$$
, $|\Delta E| < 0.1 \text{ GeV}$

•
$$M_{BC} = \sqrt{E_{beam}^2 - \overline{P}_D^2}$$
, $M_{BC} > 1.83 \text{ GeV}/c^2$

• Minimum ΔE is used to select best candidate

Signal D Reconstruction:

- No extra good charged track except 4π
- $|\Delta E| < 0.1 \text{ GeV}$
- $M_{BC} > 1.83 \text{ GeV}/c^2$

Kinematic Fit (5C):

4C for all track and 1C for signal D mass, χ^2_{5C} <200

 $\succ K_S^0 \text{ Veto for Signal Side and K3π tag side:}$ |M(π⁺π[−]) − 0.4976| > 0.03 GeV/c²

Event Selection (ΔE cut optimization)

Signal is fitted by double-Gaussian ΔE cut set to be 3σ of double-Gaussian

$\Delta E \text{ cut (GeV)}$	$K^+\pi^-$	$K^+\pi^-\pi^0$	$K^+\pi^+\pi^-\pi^-$	$\pi^+\pi^+\pi^-\pi^-$
data	[-0.028,0.027]	[-0.052,0.040]	[-0.024,0.022]	[-0.029,0.025]
MC	[-0.024,0.024]	[-0.048,0.037]	[-0.021,0.020]	[-0.026,0.023]

2018/3/5

Event Selection (χ^2_{5C} cut optimization)

- $\succ \chi^2_{5C}$ cut is determined by ROC of MC
 - signal region:

 $1.86 < M_{BC}^{tag} < 1.875, 1.86 < M_{BC}^{sig} < 1.875 \text{ GeV/c}^2$

- Signal: tag and signal is true (contain wrong side of tag mode)
- Background: tag or signal or both is wrong
- > Require $\chi^2_{5C} < 20$
- Purity in MC ~97.00% after cut
- Signal efficiency: ~76.38%
- Background rejection: ~75.27%

Background Study

Peaking background in MC

- $D^0 \to K_S^0 \pi^+ \pi^-$ ~0.76%
- $D^0 \to K^- \pi^+$ ~0.19%
- Which can be estimated by MC
- > Non-peaking background in MC
 - ~2% which can be estimated by using event in sideband region

(Fraction of background is got from MC)

Background Study (fit to data)

2D Fit to $M_{BC} \label{eq:bar}$

Signal Pdf:

- $a(x, y) \otimes g(x; \mu_x, \sigma_x) \otimes g(y; \mu_y, \sigma_y)$
- a(x, y) is 2D signal MC shape (HistPdf)
- g(x),g(y) are Gaussian function, the parameters are determined from 1D fit

Background Pdf:

- $g(x y; \mu_0, \sigma_0) * (f * c(x + y; m_0, \xi, \rho) + (1 f) * g(x + y; \mu_1, \sigma_1))$
- g(x-y) is Gaussian function, the parameters are determined from 1D fit
- c(x+y) is argus function with m_0 =1.8865*2, $\rho = 0.5$.
- f is a fraction [0,1]
- For tag mode $\overline{D}{}^0 \rightarrow K^+\pi^-$, f=1

Fit signal event: 4111+-66 Fit non-peaking background: 103+-8

Background Study (MC test)

- Same fit is performed to MC and use sideband to estimate non-peaking background
- Event fix to non-peaking bkg fit value
- non-peaking background can be described well by using the event in sideband region

35

30

25

20

15

10

5

0₋₁

-0.5

0

0.5

 $\cos\theta_{\pi}$

Background Study

Compare MC and data

	Event	Estimation
Signal	4068+-66	-
Peaking bkg	43+-2	MC
Non-peaking	103+-8	Sideband

Summary and next to do

Summary:

- > DT method with three flavor tag has been use to select $D^0 \rightarrow \pi^+\pi^-\pi^+\pi^-$, ~4000 events with ~96.5% purity
- > The non-peaking background is ~2% which can be estimated by the sideband of 2D M_{BC}
- → The peaking background is ~1% and come from well-know decay channel $D^0 \rightarrow K_S^0 \pi^+ \pi^-$ and $D^0 \rightarrow K^+ \pi^-$, which can be estimated by MC

Next to do:

- > The flavor tag event may be increased by using $D^{*+} \rightarrow \pi^+ D^0$ process @ 4180 and 4260, we will try it next
- > PWA will be performed later
- CP tag in 3770 will be used to determining F+

Thank you!