New insights on heavy flavor dynamics with CMS detector

张友森 June 2, 2022

Outline

- Open heavy flavor in small systems
 - QGP creation in small systems?
- Open heavy flavor in large systems
 - The details of heavy flavor dynamics within QGP
- Future opportunities
 - CMS-MTD

Observations in large systems

- QGP fluid in nucleus-nucleus collisions
 - Collective motions elliptic flow (v₂) and ridges
 - Coalescence process baryon enhancement

Observations in small systems

- Not expected at the beginning
 - Large and positive elliptic flow
 - Baryon enhancement

Creation of tiny QGP?

- A small QGP droplet created in-medium and final state effects
- Alternative explanations for collectivity:
 - Correlations established prior to collisions initial state effects

Large nuclei

Small nucleon, low temperature (low energy density)

Small nucleon, high density

Explore the small system deeply

• If there are any in-medium effects

Pb

- $\lambda_{m.f.p.} \ll L$
- to test medium effects

Large systems

- Increase $\lambda_{m.f.p.}$
- decrease L

Pb

р 🚺

Explore the small system deeply

- We need probes sensitive to
 - Initial correlations
 - Relative system size $\lambda_{m.f.p.}/L$
- Light flavor particles (q)
 - Can be created anytime lose the sensitivity to initial correlations
 - $\lambda_{m.f.p.}^{q}$ may be always small compared to system size
 - Hard to disentangle *initial and final state effects*

Explore the small system deeply

- We need probes sensitive to
 - Initial correlations
 - Relative system size $-\lambda_{m.f.p.}/L$
- Heavy flavor quarks (HF or Q)
 - Mostly created *in initial stages*
 - Evolve in the *entire evolution* of the system
 - $\lambda_{m.f.p.}^{Q} \gg \lambda_{m.f.p.}^{q}$
 - Sensitive to both initial correlations and in-medium effects!

pPb 8.16Te\

 $185 \le N_{trik}^{offline} < 250$

Prompt J/w 🔲 K

Prompt D⁰

Observables we are interested in

- HF flavor v₂
 - Open charm/bottom quarks, charmonia and bottomonia
- v₂ signal and its dependence on multiplicity (relative system size)
- Collisions geometry and dynamics, v₂ driven by eccentricity?

Open HF collectivity in pPb

- Fist time in pPb collisions – vanishing v₂ for b hadrons via nonprompt D⁰
- Indication of flavor hierarchy between charm and bottom hadrons at low p_T

PLB 813 (2021) 136036

Open HF collectivity in pPb

- Fist time in pPb collisions – vanishing v₂ for b hadrons via nonprompt D⁰
- Indication of flavor hierarchy between charm and bottom hadrons at low p_T

PLB 813 (2021) 136036

Open HF collectivity in pPb

- Comparisons with CGC calculations – show consistency within large uncertainties
- Precision measurements in the future – HL-LHC with CMS MTD

PLB 813 (2021) 136036

Collectivity in even smaller system

- First measurement of prompt D⁰ v₂ in high multiplicity pp collisions
- Indication of positive v₂ signal at 2 < p_T < 4 GeV
- v₂ of prompt D⁰ comparable with that of light hadrons

Multiplicity is defined in the same way as in pPb

System size dependence

- Positive v₂ is observed in high multiplicity events
- Non-zero v₂ of prompt D⁰ mesons diminish towards low-multiplicity regimes
- v₂ of prompt D⁰ in pp collisions comparable to that in pPb collisions with similar multiplicity under large uncertainty

HF dynamics in large systems

- Insights from **LARGE** systems fluctuations of elliptic flow
 - $v_2 = k \epsilon_2$ where ϵ_2 is the eccentricity of the collision geometry
 - Event-by-event fluctuations of ϵ_2 lead to fluctuations of v_2
 - k can also fluctuate event-by-event if the system is small
 - Multi-particle correlation sensitive to fluctuations
 - $v_2{4}^2 \approx v_2^2 \sigma^2$, $v_2{2}^2 \approx v_2^2 + \sigma^2$

Origin of v₂ fluctuations

- Insights from LARGE systems fluctuations of elliptic flow
 - If fluctuations only from ϵ_2 , $\frac{v_2\{4\}(pT)}{v_2\{2\}(pT)} = \frac{v_2\{4\}}{v_2\{2\}} = \frac{\varepsilon_2\{4\}}{\varepsilon_2\{2\}}$
 - If k can fluctuate, $\frac{v_2\{4\}(pT)}{v_2\{2\}(pT)} = \frac{v_2\{4\}}{v_2\{2\}} + \delta(pT)$
 - Full equation for v_2 fluctuations, see PRC 95 (2017) 044901
 - Initial ϵ_2 fluctuations vs. final state (in-medium) k fluctuations?

v_2 via multi-particle correlations

- First time to measure charm v₂ using multiple particle correlator
- Correlator

- v_2 {4} and v_2 {2} can be calculated from these correlator
- More info in PRC 83 (2011) 044913

<u>Fluctuations of v_2 </u>

• Expected ordering between v_2 {2} and v_2 {4}, v_2 {4} < v_2 {2}

USTC seminar

<u>Fluctuations of v_2 </u>

• The fluctuations of D⁰ is comparable with charged particles –

USTC seminar

<u>Fluctuations of v_2 </u>

- Model capture the trend but not quantitatively
- Strong constraints ≤[™] on model descriptions

Fluctuations across different system size

arxiv:2112.12236

 v₂{4}/v₂{2} for charm sectors are almost the same across different centrality classes – similar findings of charged particles – fluctuations almost from initial geometry

Fluctuations across different system size

- Model capture the trend but not quantitatively
- Strong constraints on model descriptions

Fluctuations towards smaller systems

arxiv:2112.12236

- Indication of splitting between charged particles and charm sectors – hint of fluctuations on energy loss towards *smaller* system
- Possible findings in pPb and pp collisions <u>if medium effects are</u> <u>dominant</u>?

- A new timing detector with timing resolution ~30ps
 - PID for Kaon up to 2.5 GeV
 - PID for proton up to 5 GeV

- Uncertainties significantly reduced, from Run 2 to Run 4
 - A factor of 3 increase on luminosity, 186 nb⁻¹ => 0.6 pb⁻¹
 - Better signal discriminating power, no PID => good PID

• Coalescence effects for HF?

Summary and outlook

- Evident charm collectivity in pPb collisions and indications of charm flow in pp collisions
- Elliptic flow signal diminishes towards lower event activity
- Hint of energy loss fluctuations in peripheral PbPb collisions
- Future opportunities with CMS-MTD

USTC seminar

Backup

- A new timing detector with timing resolution 30ps
 - Barrel Timing Layer: scintillating crystals and SiPM device
 - Endcap Timing Layer: Low Gain Avalanche Detector

Charge particles

- Linear dependence
- Hard to tell differences between 2- and 4-particle correlations

Charge particles

 Smaller differences between 2- and multi-particle correlations towards high p_τ, limited to statistical uncertainties

Future opportunities via HF productions

- If there are any in-medium effects
 - Hadronization and its dependence on multiplicity possible baryon enhancement for high multiplicity events?

