Weekly work report

PWA of $e^+e^- \rightarrow K^+K^-\pi^0\pi^0$

Yateng Zhang

Data sample

Boss version 6.6.5 p01

Date sets

15 Rscan data

Exclusive MC (ConExc) $e^+e^- \rightarrow K^{*-}K^+\pi^0$ $e^+e^- \rightarrow K^{*-}K^{*+}$ $e^+e^- \rightarrow K^+K^-\pi^0\pi^0$ $e^-e^+ \rightarrow \phi \pi^0 \pi^0$ $e^+e^- \rightarrow K_S K^{\pm} \pi^{\mp}$ $e^+e^- \rightarrow K^{\pm}K^{\mp}\pi^0/\eta$

Event selection criteria(I)

> Charged Tracks:

|Vr|<1.0 && |Vz|<10.0 && |Cosθ|<0.93; Ngood==2 ;

➢ PID:

Kaon: prob_K > prob_P && prob_K > prob_π; Ngood ==2 : N(K+)=N(*K*-)=1;

Good Photon:

Ebarrel >25 MeV; Eendcap >50 MeV; $\theta min(\gamma, charge) > 10\circ$; $0 \le TDC \le 14$; $N\gamma \ge 4$;

Event selection criteria(II)

> 6C kinematic fit : $(4\gamma K^+K^-)$ constraint a pair π⁰ mass

Amplitude

Φ+anything Φσ Φ f_0 (980) Φ f_0 (1370) Φ f_2 (1270) Φ $\pi^0 \pi^0$

 $\frac{R(\pi^{0}\pi^{0})+K^{+}K^{-}}{K^{+}K^{-}f_{0}(980)}$ $K^{+}K^{-}\sigma$ $K^{+}K^{-}f_{0}(1370)$

 $K^{*+}K^{*-}$ $K^{*\pm}K^{\mp}\pi^{0}$ $K_{1}(1400)K$ $K_{1}(1270)K$

 $\frac{\text{PHSP}}{K^+K^-\pi^0\pi^0}$

Phi mass window region: |M(KpKm)-1.02|<0.02 GeV

2.125

2.125

0.8

0.6

2D Distribution

 $M(K^+\pi^0)vsM(K^-\pi^0)$

 $K^{*+}K^{*-}$ signal

 $ig|K^+ \pi_1^0 - 0.982ig| < 0.06$ MeV or $|K^+ \pi_2^0 - 0.982ig| < 0.06$ MeV

 $ig| K^{-} \pi_{1}^{0} - 0.982 ig| < 0.06 \, \text{MeV}$ or $ig| K^{-} \pi_{2}^{0} - 0.982 ig| < 0.06 \, \text{MeV}$

two body

$K^{*+}K^{*-}$ signal

Mass 60 MeV

Mass 40 MeV

Mass 30 MeV

three body

15

Remove $K^{*+}K^{*-}$ contribution

Remove $K^{*+}K^{*-}$ contribution

Remove $K^{*+}K^{*-}$ contribution

Not include the contribution of Kstar

Not Kstar contribution

two body

80

Not Kstar contribution

Not Kstar contribution

$K^{*+}K^{-}\pi^{0}$ distribution

$K^{*+}K^{-}\pi^{0}$ distribution

 $\cos^{0}(\theta)$

0.2

0.6

0.4

0.8

-0.2

-0.4

-0.6

-0.8

Summary & outlook

- Comparing the distributions in different region, the deviation between data and fitting is from the $K^*K\pi^0$ contribution.
- Consider more intermediate states contribution, and scan the width and mass of $K^{(*)}$ resonance

Back up

No kstarp

31

No kstarp

No kstarp

Kstarp nokstarm

Kstarm nokstarp

Kstarm nokstarp

Kstarm nokstarp

