Study of $D^0 \to \pi^+\pi^-\pi^+\pi^-$ @ 4178

Xinyu Shan^{1,2}, Yue Pan^{1,2}, Haiping Peng^{1,2}

¹University of Science and Technology of China ²State Key Laboratory of Particle Detection and Electronics

Outline

- ➢ Motivation
- ≻Data Set
- Event Selection
- Background Study
- Summary and Next to do

Motivation

Study of $D^0 \to \pi^+ \pi^- \pi^+ \pi^-$ can provide important input for the determination of CKM unitarity triangle angle γ in $B^{\pm} \to DK^{\pm}$ process.

CLEO-c Phys. Lett. B747 (2015) JHEP05(2017)143

> CLEO-c and FOCUS have studied the resonance structure of $D^0 \rightarrow \pi^+\pi^-\pi^+\pi^-$, more precise result can be got by using the large and clean D^0 sample in BESIII.

Data Set

\succ	Boss	Versi	ion:	703
	0000	v CI J	011.	/05

- ➢ Data: 4178 data (~3.19*f b*⁻¹)
- ➢ Generic MC (round01 round04):
 - Open charm
 - qqbar
 - tt
 - ISR Psi

Component	Cross section(pb)	Size(M)
$D^0 ar{D}^0$	179	0.57
D^+D^-	197	0.62
$D^{*0}ar{D}^0$	1211	3.83
$D^{*+}D^-$	1296	4.10
$D^{*0}ar{D}^{*0}$	2173	6.87
$D^{*+}D^{*-}$	2145	6.78
$D_s^+ D_s^-$	7	0.02
$D_{s}^{*+}D_{s}^{-}$	889	2.81
$DD^*\pi^+$	383	1.21
$DD^*\pi^0$	192	0.61
$DD\pi^+$	25	0.08
Component	Cross section(nb)	Size(M)
$q\bar{q}$	13.8	43.62
$\gamma J/\psi$	0.40	1.26
$\gamma\psi(3686)$	0.42	1.33
$\gamma\psi(3770)$	0.06	0.19
au au	3.45	10.91
$\mu\mu$	5.24	16.56
ee	423.99	13.40(0.01x)
$\gamma\gamma$	1.7	5.1

Event Selection

Single Flavor Tag from D*+-Dominated channel: D*+D- and D*+D*-

Good charged tracks:

 $|Rz| \le 10$ cm, $|Rxy| \le 1$ cm, $|\cos\theta| \le 0.93$;

Good Photons:

- Barrel : $E_{\gamma} > 0.025 \text{GeV}$, $|\cos\theta| \le 0.8$
- Endcap : $E_{\gamma} > 0.05 \text{GeV}, 0.84 \le |\cos \theta| \le 0.92$
- Time cut: $0 \le T \le 14$ (in unit of 50 ns);
- |dang|>20°;

➢ PID :

- Use dE/dx and TOF
- Pion: prob(π) > prob(K);
- Kaon: prob(K) > prob(π);

> Tag D* Reconstruction:

- Loop 5 pi and require |M(5pi)-1.865|<0.1 GeV
- Define Mrec and require |Mrec M(D*+/D+)|<0.07GeV
- Min | Mrec $M(D^*/D)$ | is used to select best 5 pi.
- Min |M(4pi) M(D0)| is used to choose the pi from D0
- Deal with D*D and D*D* sample respectively

$$M_{rec} = \sqrt{\left(E_{cm} - \sqrt{p_{tag}^2 + M_{D_s}^2}\right)^2 - p_{tag}^2}$$

> Kinematic Fit (2C):

1C for D0 mass and 1C for recoiled mass (D*+/D+), χ^2_{2C} <200

K_S⁰ Veto :
$$|M(\pi^{+}\pi^{-}) - 0.4976| > 0.03 \text{ GeV}/c^{2}$$

Event Selection (χ^2_{2C} cut optimization)

- $\succ \chi^2_{2C}$ cut is determined by S/sqrt(S+B)
 - signal region: M(5pi)-M(4pi) < 0.15 GeV/c^2
 - S+B is get from data
 - S is get from inclusive MC
 - Signal efficiency: 76.2% in MC
 - Background rejection: 82.4% in MC

Background Study

Peaking background in MC (signal region)

•	$D^0 \rightarrow K_S^0 \pi^+ \pi^-$	~1.3%
٠	$D^0 \rightarrow K^- \pi^+$	~0.2%

Background Study (fit to data)

2D Fit to $M_{BC}\,$

- Signal Pdf:
 - $a(x) \otimes g(x; \mu_{\chi}, \sigma_{\chi})$
 - a(x) is MC shape (HistPdf)
 - g(x) are Gaussian function

Background Pdf:

- MC shape (KeysPdf rho=2, MirrorRight)
- > Purity
 - For D*D*: ~82%
 - For D*D : ~65%
 - Total: ~76%