On $\Lambda - \overline{\Lambda}$ Oscillation

Kam-Biu Luk

University of California, Berkeley

And

Lawrence Berkeley National Laboratory

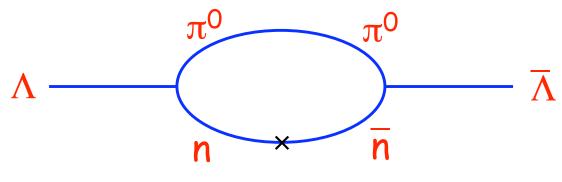
International Workshop on Baryon-Lepton Number Violation LBL, September 22, 2007

Motivation

- Baryon number may not conserve
- · Grand unified theories predict
 - ΔB = -1, ΔL = -1, B-L conserving processes: p \rightarrow e⁺ π^0 or
 - $\Delta B = 2$, $\Delta L = 0$, B-L non-conserving processes: $n-\overline{n}$ oscillation
- If $n-\overline{n}$ oscillation exists, then

$$\Lambda - \overline{\Lambda}$$
 Oscillation

can take place as well:



Phenomenology

The equation of motion in a static magnetic field is:

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} \Lambda \\ \overline{\Lambda} \end{pmatrix} = -\frac{\mathrm{i}}{\hbar} \begin{pmatrix} m_{\Lambda} - \Delta E_{\Lambda} & \delta m_{\Lambda \overline{\Lambda}} \\ \delta m_{\Lambda \overline{\Lambda}} & m_{\overline{\Lambda}} - \Delta E_{\overline{\Lambda}} \end{pmatrix} \begin{pmatrix} \Lambda \\ \overline{\Lambda} \end{pmatrix}$$

where

$$\Delta \mathbf{E} = -\vec{\boldsymbol{\mu}} \cdot \vec{\mathbf{B}}$$

The probability of oscillation is then given by

$$P_{\overline{\Lambda}}(t) = \left(\frac{\omega_{\rm m}^2}{\omega_{\rm m}^2 + \omega_{\rm B}^2}\right) \sin^2 \sqrt{\omega_{\rm m}^2 + \omega_{\rm B}^2} t$$

where

$$\omega_{\rm m} = \frac{\delta m_{\Lambda \overline{\Lambda}}}{\hbar} \qquad \omega_{\rm B} = \frac{\mu B}{\hbar}$$

If the magnetic field is absent,

$$P_{\overline{\Lambda}}(t) = \sin^2 \omega_{\rm m} t$$

Inputs

• For free neutron, the mean $n-\overline{n}$ oscillation time is

$$\tau_{n\bar{n}} > 8.6 \times 10^7 \text{ sec (PDG)}$$

Hence, we expect, to the first order,

$$\tau_{\Lambda \overline{\Lambda}} \approx \tau_{n\overline{n}}$$

· As a result, the mass splitting is

$$\delta m_{\Lambda \overline{\Lambda}} < \frac{\hbar}{\tau_{\Lambda \overline{\Lambda}}} \approx 10^{-23} eV$$

The local magnetic field leads to

$$\Delta E = \mu B = (0.642 \mu_N)(0.5 \times 10^{-4} \,\mathrm{T}) \approx 10^{-12} \,\mathrm{eV}$$

Consequences

- The mean life of Λ is τ_{Λ} = (2.632±0.020) × 10⁻¹⁰ s (PDG)
- At the Fermilab fixed-target energies, most Λ 's decay in a region of about 30 m; hence the time available for oscillation is

$$t = 10^{-7} s$$

 During this time, the effect of the local magnetic field is given by

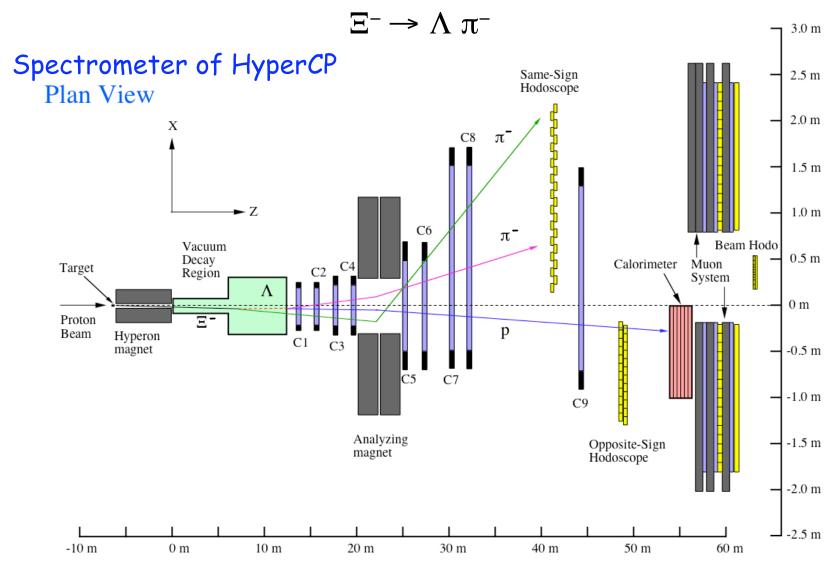
$$\frac{2\Delta E \cdot t}{\hbar} \approx 3 \times 10^{-4} << 1$$

 To achieve the quasi-free condition, attenuate the local magnetic field. Then the probability of oscillation is

$$P_{\overline{\Lambda}}(t) = \sin^2 \omega_{\rm m} t \approx (\omega_{\rm m} t)^2$$

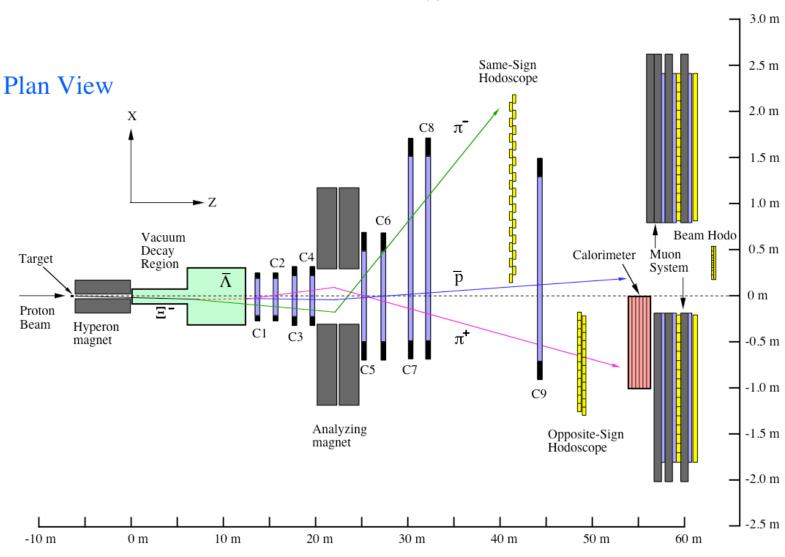
Experimental Considerations

• Need a pure sample of Λ hyperons:



Look For Anomaly

$$\Xi^- o \overline{\Lambda} \ \pi^-$$



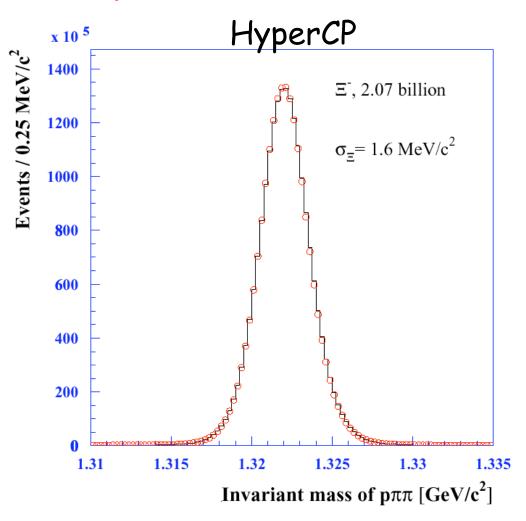
Sensitivity

• Single-event sensitivity of observing $\Xi^- \to \overline{\Lambda} \ \pi^-$ in one year of running that can be achieved is

$$\frac{\mathsf{Br}(\Xi^{-} \to \overline{\Lambda} \ \pi^{-})}{\mathsf{Br}(\Xi^{-} \to \Lambda \ \pi^{-})} < 1 \times 10^{-9}$$

This would imply

$$\tau_{\Lambda\bar{\Lambda}} > t \sqrt{\frac{N_{\Lambda}}{N_{\bar{\Lambda}}}} = 10^{-7} \sqrt{\frac{2 \times 10^{9}}{2.3}} s \approx 10^{-3} s$$



Conclusions

- If n-n oscillation exists, then it would be possible to induce $\Lambda \overline{\Lambda}$ oscillation.
- It is possible to produce a clean tagged Λ beam for studying the Λ - $\overline{\Lambda}$ oscillation. However, the significantly shorter mean life of Λ hampers a sensitive search for such oscillation.
- The current data samples can only establish a mixing time $\tau_{\Lambda\overline{\Lambda}}$ to about 10^{-3} s.