Study of
$$e^+e^- \rightarrow \pi^+\pi^-\psi(3686)$$
, $\psi \rightarrow \pi^+\pi^-J/\psi$

Li Xuhong, Zhou Xiaorong, Peng Haiping

University of Science and Technology of China State Key Laboratory of Particle Detection and Electronics

Data Sets

- ■Boss Version 702.p01;
- ■2017 new data samples

Event selection

Good Charged Tracks Selection

$$|V_r| < 1.0, |V_z| < 10.0, |Cos\theta| < 0.93;$$

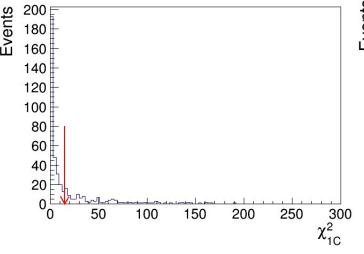
 $N_{good} = 6 \text{ or } 5; N(l^-) = N(l^+) = 1, l = e(\mu);$

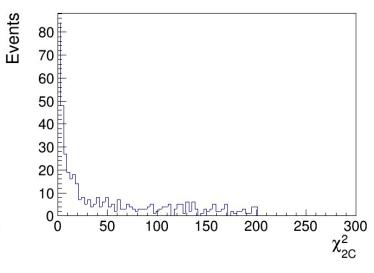
PID

lepton:
$$p > 1.0 \; GeV/c$$
, e^+e^- : $\frac{E}{p} > 0.7$, $\mu^+\mu^-$: E < 0.45 GeV ; Pion: $p < 0.65 \; GeV/c$;

4C and 5C Kinematic fit for 6 tracks

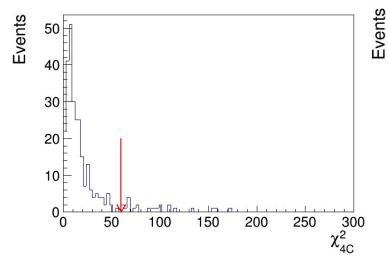
$$\chi^2_{4C}$$
<60, no χ^2_{5C} cut l^+l^- mass range: [3.05, 3.15] *GeV*

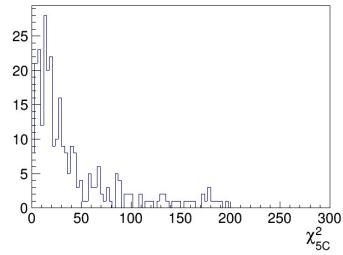

• 1C and 2C Kinematic fit for 5 tracks


$$\chi_{1C}^2 < 60$$
, no χ_{2C}^2 cut l^+l^- mass range: [3.05, 3.15] *GeV*

Chisq of kinematic fit(4180)

• For 5 tracks case:

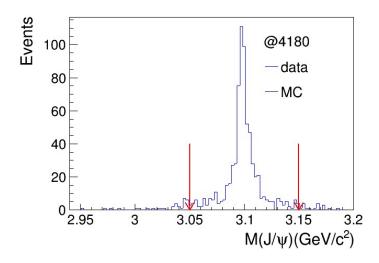

$$\chi^2_{4C}$$
<60, no χ^2_{5C} cut

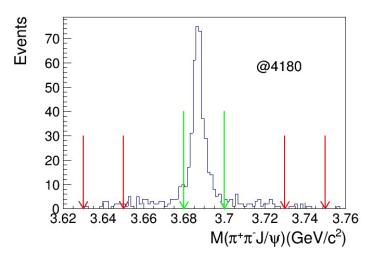


• For 6 tracks case:

$$\chi^{2}_{1C}$$
<60, no χ^{2}_{2C} cut

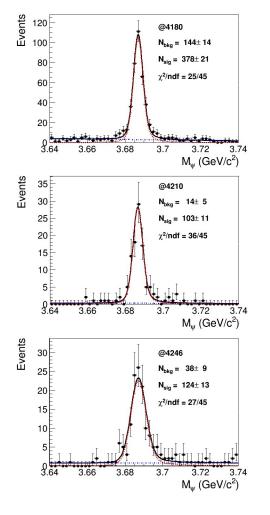
Mass window

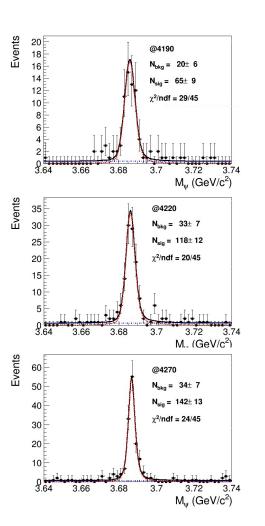

• After 1C or 4C:

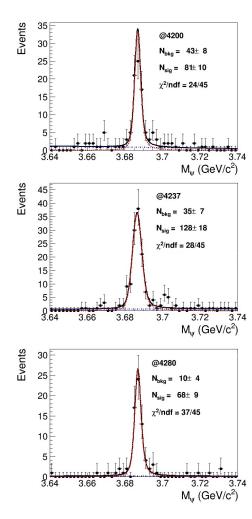

 l^+l^- mass range: [3.05, 3.15] *GeV*

• For study of intermediate states:

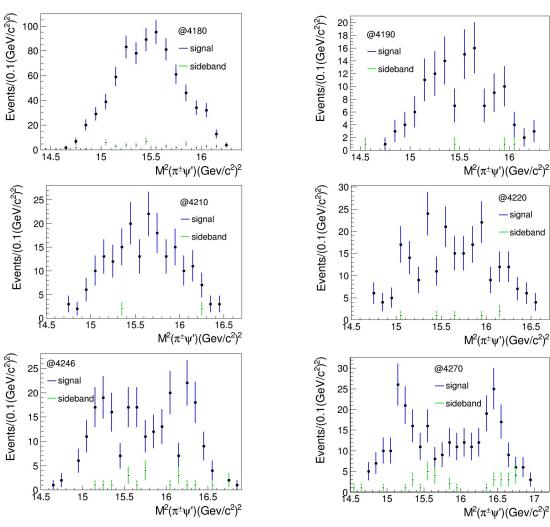
 $\psi(3686)$ mass range: [3.68, 3.70] *GeV*

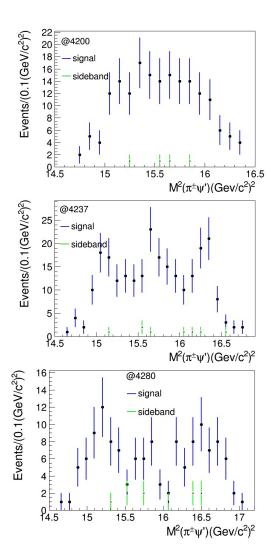

Sideband range:[3.63,3.65] *GeV*,[3.73,3.75] *GeV*

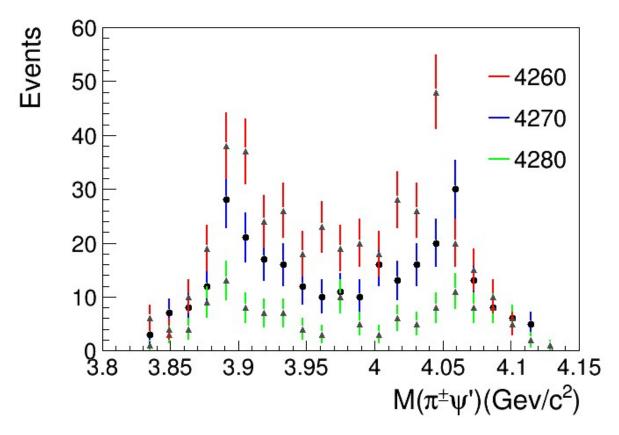




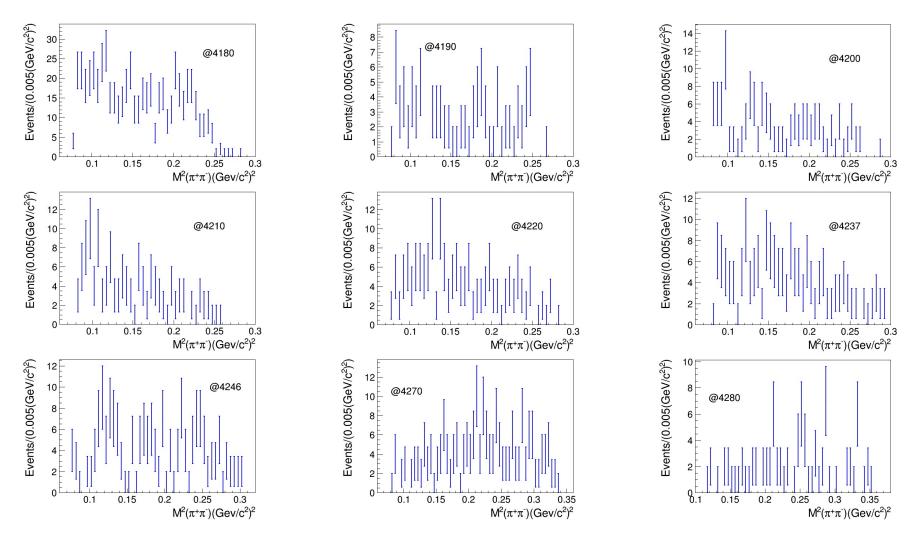
Fit result


Fit method: MC⊗Gaussian





Study of intermediate states



Study of intermediate states

The peaks are at the same point

Study of intermediate states

backup

energy	$\mu^+\mu^-$		e^+e^-		5 tracks		6 tracks		total	
	N_{sig}	ϵ	N_{sig}	ϵ	N_{sig}	ϵ	N_{sig}	ϵ	N_{sig}	ϵ
4180		26.80%	±	18.17%		21.20%	±	23.76%	378 <u>±</u> 21	44.96%
4190		26.97%	±	18.38%	±	21.16%	±	24.20%	65 <u>±</u> 9	45.36%
4200		27.14%	±	18.37%	±	21.09%	±	24.43%	81 <u>±</u> 10	45.51%
4210		27.19%	±	18.38%	±	20.91%	±	24.66%	103±11	45.57%
4220		27.12%	±	18.42%	±	20.77%	±	24.77%	118 <u>±</u> 12	45.54%
4237		26.73%	±	18.13%	±	20.51%	±	24.35%	128 <u>±</u> 18	44.86%
4246		26.51%	±	17.96%	±	20.18%	±	24.29%	124±13	44.47%
4270		26.21%	±	17.67%	±	19.85%	±	24.03%	142±13	43.88%
4280		26.20%	±	17.64%	±	19.73%	±	24.11%	68 <u>±</u> 9	43.84%