STCF Detector Concept

Jianbei Liu

For the STCF detector team

State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

> EicC-STCF Joint Meeting February 22, 2020

Super Tau-Charm Facility in China

 STCF : a natural extension of BEPCII and a viable option for a post-BEPCII HEP project in China.

- $E_{cm} = 2.7 \text{ GeV}, L^{\sim}$ 0.5×10³⁵ cm⁻²s⁻¹ @4 GeV
- Symmetrical collision
- double-ring, 600-800 m
- Large Piwinski angle & Crab waist
- Upgradable for polarized electron beam

An super **t**-**c** machine far beyond BEPCII

Feature of Final States at STCF

- Final-state particles are largely of low momentum /energy .
- Design of the STCF detector has to match this important feature of final states.

Physics Requirements

> The centerpiece

- Efficient and precise reconstruction of exclusive final states produced in e⁺e⁻ collisions of 2-7 GeV.
- Large solid angle coverage
- High efficiency and good resolution for both charged and neutral particles of low momentum/energy (<~ 1 GeV).
- E_{cm} being up to 7 GeV calls for PID in a large momentum range (up to 2 GeV)
- Measurement of and search for rare processes demands superior pi/K and μ identification capability.

Experimental Conditions

- High luminosity of ~10³⁵ cm⁻²s⁻¹ at STCF
 - High counting rate and high radiation level
- Constrains from the interaction region (IR), particularly on trackers.
- Detailed MDI studies are required (and ongoing)

Extrapolation from BESIII (×100)

- Counting rates
 - Tracker: >> 100 kHz/cm²@R<5cm, < 5 kHz/cm² @ R > 20cm

- PID: 400 Hz/cm² (Barrel), 4 kHz/cm² (Endcaps)
- ECAL: 400 kHz/crystal (Barrel), 3 MHz/crystal (Endcaps)
- Radiation dose
 - ECAL: 10 krad/year (Barrel), 20 krad/year (Endcap)

Important Aspects for STCF Detector

- Large and well-defined acceptance → cone-shaped endplate of the tracker
- High rate capability and radiation tolerance
- Fast response and high resolution
- Mis-measurement/identification well under control
- Low detection threshold (tracking, γ , μ -ID ...)
- Everything inside ECAL needs to be as light as possible
- Vertexing not critical. Inner-outer separate design for tracking system, and the inner part has to stand very high levels of radiation → challenging part.
- Technology beyond dE/dx+TOF is required for PID up to 2GeV .

STCF Detector Concept

Tracking System

- Fully efficient tracking is needed for particles down to 100 MeV, and it is highly desirable to have good tracking performance even down to 50 MeV : tracking in low p
- Dominant factors in low p tracking: multiple scattering and energy loss
- So driving force in design of tracking system: low mass.
- Separate designs for the inner and outer trackers.
- A low-mass drift chamber could serve as the outer tracker.
- But new technology is needed for inner tracking

Low mass + high rate

• Magnetic field: 1 T (adjustable for lower fields).

Outer Tracker: A Drift Chamber

- Helium-based gas: He/C₂H₆ (60/40)
- Small square cells
- Sense wire: 20 um W, Field wire: 100 um Al
- Carbon fiber for both inner and outer walls

Continued

Layer	No.of cells	Start radius(mm)	$\operatorname{Cell\ size}(\operatorname{mm})$	Stereo $angle(degree)$
Axial 1	128	200.0	9.8	0
Axial 2	128	209.8	10.3	0
Axial 3	128	220.1	10.8	0
Axial 4	128	230.9	11.3	0
Axial 5	128	242.2	11.9	0
Axial 6	128	254.1	12.5	0
Stereo U 7	160	272.6	10.7	2.49
Stereo U 8	160	283.3	11.1	2.59
Stereo U 9	160	294.4	11.6	2.69
Stereo U 10	160	306.0	12.0	2.79
Stereo U 11	160	318.0	12.5	2.90
Stereo U 12	160	330.5	13.0	3.02
Stereo V 13	192	343.5	11.2	-2.61
Stereo V 14	192	354.7	11.6	-2.69
Stereo V 15	192	366.3	12.0	-2.78
Stereo V 16	192	378.3	12.4	-2.87
Stereo V 17	192	390.7	12.8	-2.97
Stereo V 18	192	403.5	13.2	-3.06
Axial 19	224	422.7	11.9	0
Axial 20	224	434.6	12.2	0
Axial 21	224	446.8	12.5	0
Axial 22	224	459.3	12.9	0
Axial 23	224	472.2	13.2	0
Axial 24	224	485.4	13.6	0
Stereo U 25	256	505.0	12.4	2.87
Stereo U 26	256	517.4	12.7	2.94
Stereo U 27	256	530.1	13.0	3.01
Stereo U 28	256	543.1	13.3	3.08
Stereo U 29	256	556.4	13.7	3.16
Stereo U 30	256	570.1	14.0	3.24
Stereo V 31	288	584.1	12.7	-2.95
Stereo V 32	288	596.8	13.1	-3.01
Stereo V 33	288	609.9	13.3	-3.08
Stereo V 34	288	623.2	13.6	-3.14
Stereo V 35	288	636.8	13.9	-3.21
Stereo V 36	288	650.7	14.1	-3.28
Axial 37	320	670.8	13.2	0
Axial 38	320	684.0	13.4	0
Axial 39	320	697.4	13.7	0
Axial 40	320	711.1	14.0	0
Axial 41	320	725.1	14.2	0
Axial 42	320	739.3	14.5	0
Axial 43	352	753.8	13.5	0
Axial 44	352	767.3	13.7	0
Axial 45	352	781.0	13.9	0
Axial 46	352	794.9	14.2	0
Axial 47	352	809.1	14.5	0
Axial 48	352	823.6	14.7	0

Expected momentum resolution

Pushing a drift chamber to the limit

把漂移室的物质量推低到极限

By Francesco GRANCAGNOLO from INFN

A STCF Drift Chamber with extremely low mass

R _{in} – R _{out} [mm]		200 – 800	cell			
active L – se	ervice area [mm]	1800 – 200	shape square			
	inner cylindric	cal wall	size [mm]	7.265 – 9.135		
C-fiber/C-foam sandwich 2×80 µm / 5 mm 0.		0.036 g/cm ² – 8×10 ⁻⁴ X/X ₀	layer			
			8 super-layers	8 layer each		
outer cylindrical wall			64 layer total			
C-fiber/C-foam	2×5 mm / 10 mm	0.512 g/cm ² – 1.2×10 ⁻² X/X ₀	stereo angles	66 – 220 mrad		
sandwich			n. sense wires [20µm W]	23,040		
	end plat	e	n. field wires [40/50µm Al]	116,640		
gas envelope	160 µm C-fiber	$0.021 \text{ g/cm}^2 - 6 \times 10^{-4} \text{ X/X}_0$	n. total (incl. guard)	141,120		
	wire PCB, spacers, HV distr. and cables, limiting R, decoupling C and	0.833 g/cm² – 3.0×10 ⁻² X/X ₀	gas + wires [600 mm]			
instrumented wire cage			90%He – 10%iC₄H ₁₀	4.6×10 ⁻⁴		
	signal cables		W + 5 Al → Ti + 5 C	(13.1 → 2.5)×10-4		

 $\sigma_{\text{pt}}/\text{pt}$ = 0.1% pt \oplus 0.2%

by Francesco GRANCAGNOLO from INFN

Existent Inner Tracker Technologies

DEPFET

MAPS (ALPIDE)

Cylindrical GEM

Cylindrical MicroMegas

A New Silicon Detector: DMAPS

Electronics outside the charge collection diode, small capacitance \rightarrow low noise. Long drift distance, low field

Depletion is needed for radiation hardness

CMOS! e.g. 1st stage amplifier Pixel i Pixel i+1 n-well in p-substrate diode PMOS NMOS HV deep N-well n-well biasing 14 µm @ 100V -1000 e depletion zone around Depleter resist~10Ω.cm nwell: charge collected by drift P-substrate Not depleted

Electronics inside the large charge collection diode, large capacitance \rightarrow high noise, high power consumption. short drift distance, high field

 \rightarrow HR or HV: two approaches to depletion R&D ongoing for HL-LHC

Novel on-chip readout schemes also under development for high rate application

Depleted CMOS MAPS \rightarrow low mass, high rate, radiation hard \rightarrow An interesting technology for inner tracking at STCF

A New MPGD : uRWELL

• Very compact, spark protected, simple to assemble, flexible in shapes (rather easy to make a cylindrical detector)

 Another promising solution to STCF inner tracking. R&D underway in collaboration with INFN and CERN.

16

Inner Tracker Baseline

Structure	Material	Thickness (cm)	Material budget (X/X ₀)
Inner tube	Copper (X_0 =1.436 cm)	0.001	0.069%
	Polyimide (X_0 =28.57 cm)	0.01	0.035%
	Aramid honeycomb/Rohacell (X ₀ ~800 cm)	0.2	0.025%
Gas Volume	Helium-based gas mixture (X_0 =56710 cm)	0.3	0.00053%
Outer tube (μ RWell foil)	Copper (X_0 =1.436 cm)	0.001	0.069%
	Polyimide (X_0 =28.57 cm)	0.015	0.053%
	DLC ($X_0 = 12.13 \text{ cm}$)	0.0001	0.00082%
Total			0.252%

Table 4.1.1: The material budget of the μ RWell-based inner tracker design.

PID Detector

- π/K separation up to 2 GeV.
 - Cherenkov-based technology is favorable.
 - Very low p region (<~0.6GeV) is covered by trackers through dE/dx measurement
- Compact (<20cm) and low mass (<0.5X₀)

Detector Options

• RICH

collection

electrode

pad cathode

covered with

- Very powerful over a wide range of momentum
- Reconstruction straightforward
- Additional space for Cherenkov cone expansion: less compact
- A large number of readout channels : cost, cooling ...
- DIRC-like: iTOP, FTOF, DIRC ...
 - Very compact, operation convenient
 - Reconstruction complicated

Neoceram

C_eF₁₄radiator

quartz window

frontend electronics

-MWPC

ALICE HMPID

- Quartz manufacturing and processing very challenging

iTOP for BELLE2

STCF-RICH Design

- Proximity focusing RICH with Csl-coated MPGD readout
 - avoid photon feedback
 - less ion backflow to Csl
 - Fast response, high rate capacity
 - Radiation hard
- Proximity gap ~10cm
- Radiator: liquid C₆F₁₄, n~1.3
- CsI光阴极:紫外光收集和 探测(很多问题的根源)

Performance Simulation

DMM: A Promising MPGD Photon Detector

- DMM: Double-mesh Mircromegas detector, which is being developed at USTC
 - High gain and very low ion backflow
 - Very suitable for single photon detection (with a proper photon-electron converter)
 - An promising photon detector option for STCF-RICH

IBF ~ 0.03%

Gain ~ 3×10⁶

使用可见光波段?

- 如果使用对可见光敏感的光探测器,则可极大简 化RICH探测器的设计、制作和运行。
- 半导体光电器件的迅速发展为此提供了可能?

- 双辐射体RICH探测器 概念
- 水、普通玻璃和Aeorgel
 对可见光均透明!
- 可以很好的兼顾π/K和 π/μ 鉴别。
- SiPM: 造价、噪声?

DIRC Detectors

Advent of high performance silicon photon sensors (magnetic field resistant, high-gain, fine granularity, compact, high time resolution) makes a compact DIRC possible

DIRC-like TOF for Endcaps

- DIRC-like forward TOF detector (FTOF: quartz + MCP-PMT) was developed at LAL for the SuperB factory project.
 - No Cherenkov angle reconstruction, simple and no need for space for optical expansion \rightarrow very compact!
- Flight length to STCF endcaps ~ 1.4 m, making FTOF a feasible PID detector option for STCF endcaps.
 - A time resolution of ~40 ps is required for pi/K separation to reach 2GeV.

~ 80ps per PE

STCF-FTOF Design

STCF-FTOF Performance

FTOF K/ π separation (endcap) 10 -10 ps 9 20 ps 30 ps K/π separation (σ) 40 ps $\Delta t = \frac{Lc}{2p^2} \left(m_1^2 - m_2^2 \right) \qquad \qquad L_{\rm min} = 1.28 \ {\rm m}$ 50 ps -70 ps 100 ps separation power = $\frac{|\Delta t|}{\sigma}$ $\sigma_{\rm tot}^2 \sim \left(\frac{\sigma_{\rm electronics}}{\sqrt{N_{\rm p.e.}}}\right)^2 + \left(\frac{\sigma_{\rm detector}}{\sqrt{N_{\rm p.e.}}}\right)^2 + \left(\frac{\sigma_{\rm TTS}}{\sqrt{N_{\rm p.e.}}}\right)^2 + \sigma_{\rm trk}^2 + \sigma_{t0}^2$ 1.5 2 2.5 0.5 3 3.5 4 Momentum (GeV/c) efficiency 8.0 1 $\sigma_{electronics} = 10 ps$ $\sigma_{TTS} = 70 ps$ $\sigma_{detector} = 80 \text{ps}$ ⊆ _{0.6}, - missID=1% $\sigma_{trk} = 10ps$ missID=4% $\sigma_{T0} = 40 ps$ 0.4 missID=10% NPE > 10missID=15% 0.2 Total time resolution <50ps 2 2.5 3 3.5 0.5 1 1.5 4 Momentum (GeV/c) 2019/12/25

27

1

Endcap PID Alternative: DIRC

成像型DIRC探测器设计

Baseline STCF PID Detector System

• RICH in Barrel + FTOF in Endcaps

Issues to be clarified:

- Size of dead area between detector sectors (particularly in the case of RICH)
- RICH performance degradation at large incident angles
- Timing uncertainty due to longitudinal beam size
- Impact of background radiation on FTOF performance

- 核心是能在高本底计数下精确测量能量(20 MeV 2 GeV)
 探测器方案: 快发光晶体 + 半导体光电器件
- 此外,位置测量和时间测量也很重要。量能器设计应同时充分考虑这两方面的要求。

Crystal	Pure Csl	LYSO	GSO	YAP	PWO	BGO	Csl (Tl)
Density (g/cm ³)	4.51	7.40	6.71	5.37	8.30	7.13	4.51
Melting Point (°C)	621	2050	1950	1872	1123	1050	621
Radiation Length (cm)	1.86	1.14	1.38	2.7	0.89	1.12	1.86
Moliere Radius (cm)	3.57	2.07	2.23	4.50	2.00	2.23	3.57
Refractive index	1.95	1.82	1.85	1.95	2.20	1.82	1.95
Hygroscopicity	Slight	No	No	No	No	No	Slight
Luminescence (nm)	310	402	430	370	425	480	550
					420		
Decay time (ns)	30	40	60	30	30	300	1220
	6				10		
Light yield (%)	3.6	85	20	65	0.3	20	165
	1.1				0.1		
Dose rate dependent	No	No	TBA	TBA	Yes	Yes	No
d(LY)/dT (%/°C)	-1.4	-0.2	-0.4	TBA	-2.5	-1.0	0.4
Experiment	KTeV				CMS	L3	BESIII
	Mu2e				ALICE		BELLE(II)
					PANDA		BaBar

STCF-EMC选用纯CsI(pCsI)晶体

- 长度: 15 X₀
- 横截面: 5cm*5cm
- 动态范围: 1 MeV~2000 MeV
 - APD是比较合适的光探测器
- 时间分辨: 几百ps

Layout of Crystals

- Barrel includes 4200 pCsI crystals arranged in 35 rings (along Z) of 120 crystals each.
- Endcap is composed of 1256 pCsI crystals.
- ~15 X₀

能量分辨研究

- 1. 本征分辨 (只考虑能量沉积)
- 2. 引入光电子涨落
- 3. 引入晶体荧光收集非均匀性
- 4. 引入APD对次级带电粒子的响应 5. …

工有准		方句妆	光电子涨落			不均匀性(100 pe/MeV)		
	兀巴衣	有巴衣	20	50	100	O%	5%	10%
桶部	0.85%	0.96%	1.58%	1.30%	1.14%	1.07%	1.02%	1.12%
端盖	1.05%	1.25%	1.62%	1.37%	1.22%	1.21%	1.37%	1.48%

1 GeV 光子

$$v_0(t) = L^{-1}[V_o(s)] = \frac{Q}{C_f} \cdot \frac{1}{m!} \left(\frac{t}{\tau}\right)^m e^{-t/\tau} \cdot u(t)$$

- 采用 BES3-ECAL本 底计数率×100
- 考虑完整电子学响应
- 模拟堆积效应

对低能光子能量分辨影响极大!本底计数率估计太高?

EMC Performance

- 探测器技术选项: RPC、塑闪+SiPM
- 采用RPC-塑闪混合式设计(3层RPC+8层塑闪) 可以有较好的中性强子识别能力。

MUD Performance

Figure 4.5.5: The cluster distribution in MUC: 1000 600 MeV/c neutron (left), 1000 600 MeV/c KL (middle), 1000 600 MeV/c pi⁺ (right).

Summary

Highlights of STCF detector R&D

探测器原理样机束流测试@DESY

RICH样机研制

□ CsI光电阴极 □ MPGD光电探测器 ■ 基于THGEM+MM基准方案

光电探测器性能测试

CsI 光电阴极的制备

RICH样机组建

连接电子学读出联调

RICH样机宇宙线及束流测试

宇宙线µ子及高能电子束 流测试示意图

宇宙线µ子产生的切伦科夫光信号候选事例

RICH Readout ASIC

STCF RICH 前端读出ASIC设计

- □ 近期, STCF RICH的ASIC设计完成,并已进行了投片,目前芯片正在制作中。此次投片的原理验证ASIC共 包含两种:
 - 纯模拟前端双通道芯片:仅包含电荷灵敏前置放大器、极零相消及成形电路,用于评估模拟部分的电路性能;
 - · 模数混合8通道芯片: 包含模拟前端电路、开关电容采样阵列及片内ADC, 降低后端电路复杂性。

纯模拟前端双通道电路版图

模数混合8通道芯片版图

粒子鉴别器 - FTOF

FTOF原理样机及束流测试

50cm x 12cm x 1.5cm 熔融石英晶体(全 光谱透过率~90%@波长>190nm),表 面及侧面抛光质量分别达到100Å RMS。

 $\sigma_{\rm tot}^2 \sim \left(\frac{\sigma_{\rm electronics}}{\sqrt{N_{\rm p.e.}}}\right)^2 + \left(\frac{\sigma_{\rm detector}}{\sqrt{N_{\rm p.e.}}}\right)^2 + \left(\frac{\sigma_{\rm TTS}}{\sqrt{N_{\rm p.e.}}}\right)^2 + \sigma_{\rm trk}^2 + \sigma_{t0}^2$

50ps 总体时间分辨下FTOF粒子鉴别能力

粒子鉴别器 - FTOF

FTOF双阈值定时电路

16通道,TOT修正,定时精度~8ps

高精度时钟分发电路

MCP-PMT Development

中科大-西光所MCP-PMT联合研制

西光所-中科大研究人员组成了联合研究组,在STCF项目的支持下先后完成了单阳极和多阳极MCP-PMT的研发和测试,主要性能接近或达到国际同型号产品的先进水平。

PMT编号	量子效率	增益	峰谷比	时 间 分 辨(ps)	上升时 间 (ps)	串扰信号 幅度比
1#	22%@400nm	1.5×10 ⁷ @2100V	3.4	~70 (ơ)	340	~13%
2#	24%@400nm	1.3×10 ⁷ @1900V	4.0	~55 (ơ)	350	~16%
Photonis M16	22%@~400nm	>106	>2	35-50 (σ)	500	~10-20%
Hamamatsu M16	24%@~400nm	>106	>2	70-100 (FWHM)	180	~10-20%

ECAL关键技术研究

ECAL探测单元(晶体+APD)

ECAL读出电子学 电荷灵敏前放+成形放大

噪声水平

ECAL探测单元光产额

目前研究重点:提高pCsl荧光产额