
Status and Plan of STCF Software

Xingtao Huang (SDU)
On behalf of the STCF Software Group

EicC-STCF Joint Meeting
University of Science and Technology of China, Hefei

Feb 21 - 22, 2020

Outline

u STCF Offline Software System
u Framework
u Event Data Model
u Generator
u Detector Simulation
u Visualization
u Reconstruction
u Summary and Outlook

2

OSCAR: Offline Software of Super Tau-Charm Facility

Overview of STCF Software System

SNiPER

Generator Analysis

Simulation

Calibration

Reconstruction

Offline ExLibs
DD4hep ROOT Geant4 HepMC

CLHEP Boost Python
……

u External Libs: Frequently used third-party software and tools.
u SNiPER Framework: Providing Data Processing Management, Event data

Management, Common Services, User Interface …
u Offline : Specific to the STCF Experiment, including extensions to SNiPER,

Generator, Simulation, Calibration , Reconstruction and Analysis
3

Minimum Requirements of Users

Framework Developers
Provide main functions for HEP data
processing
(C++, Python, SQL, multi-thread,…)

Application Developers
Write new Algorithms and configuration files

(C++ and Python)

Physicists
Modify/Resue algorithms and run jobs

(C++ and Python)

4

SNiPER Framework

u SNiPER: the “Software for Non-collider Physics ExpeRiment”
ðDeveloped for JUNO experiment ,also considered for other

physics experiments
ðUsed by JUNO,LHAASO ,STCF, nEXO
ðBeing Investigated by HERD

u The Design Goals
ðLightweight, less dependences on third-party software/libs
ðFast and flexible execution
ðEasy to learn and convenient to use

u A Good Team to maintain and optimize
ðSDU and IHEP

5

Main Features of SNiPER

u Highly modular
u Dynamically loading packages/modules/elements
u Standard interfaces between different modules
u Separation between data and algorithm
u Data Store for event data management
u Flexible event execution

ðSequential and Jump/nested execution

u Support multithreading
ðUnderlying the intel TBB is deployed

6

Key Components of SNiPER

u User Interfaces (Dynamically Loadable Elements)
ðAlgorithm
ðService
ðTask

u Data Store
u Property
u Logging
u Parallelism

7

Algorithm
u An unit of code for event execution

ðPerform event calculation during event loop
ðUsers only focus on processing “One Event”

u Framework provides the interface, AlgBase

u User’s new algorithm inherits from AlgBase
ðIts constructor takes one std::string parameter
ð3 member functions must be implemented

• bool initialize() : called once per Task (at the beginning of a Task)
• bool execute() : called once per Event
• bool finalize() : called once per Task (at the end of Task)

u Then, the new algorithms can be called by Framework
8

Example: HelloAlg

9

Service

u Similar with Algorithm, but
ðA piece of code for common use, i.e. GeometrySvc,

DatabaseSvc…
ðThey are called by algorithms or other services, wherever needed

u Framework provides the interface, SvcBase

u New services inherits from SvcBase
ðIts constructor takes one std::string parameter
ð2 member functions must be implemented

• bool initialize() : called once per Task (at the beginning of a Task)
• bool finalize() : called once per Task (at the end of Task)

10

Example: HelloSvc

11

Existing Services

u Data Store Management Service
u Detector Geometry Construction Service
u Unified Geometry Provider Service
u Random Number Service
u Database Service
u Root File Input/Output Service
u Root Histogram/N-tuple Service
u ……

12

Task

u A lightweight application manager
ðConsist of algorithms, services and sub-tasks
ðControl algorithms’ execution
ðHas its own data store and I/O system (see next slide)

u One job can have more than one Tasks

u The objects of algorithms or services are organized in a tree
structure

13

Python Script Example

14

Data Store
u It is the dynamically allocated memory place to hold

event(s) which are being processed

u Algorithms get event data from the Data Store and
update/add event data after executions

15

Interfaces for access to Data Store

u DataStoreMgr is to adopt Event Data in DataStore under
a certain path

uEvtDataPtr is to retreive Event Data from DataStore with
a unique path

16

u Configurable variable at run time

Property :set parameters at runtime

u Declare a property in DLElement(Alg, Svc, Tool and Task)

u Configure a property in Python script

u Types can be declared as properties:
ð scalar: C++ build in types and std::string
ð std::vector with scalar element type
ð std::map with scalar key type and scalar value type

17

u SniperLog: a simple log mechanism supports different
output levels
0: LogTest
2: LogDebug
3: LogInfo
4: LogWarn
5: LogError
6: LogFatal

u Each DLElement(Alg,Svc,Tool, Task) has its own
LogLevel and can be set at run time
ð very helpful for debugging

u The output message includes more information , such as
ð where it happens
ð message level
ð message contents

Logging：manage output message

18

Parallelism

u Developed based on Intel TBB to Support event level parallelism
ð Muster: Multiple SNiPER Task Scheduler
ð SniperTbbTask: Binding of a SNiPER Task to a TBB task

u Global DataStore to provide events for multi-tasks (or multi-threads)
u A dedicated task(thread) is used to read/write event data from/to files

19

A typical Job configuration file

Setup a Task

Add algorithm into the Task

Define Detector Geometry

Define Event Manager
Output Event Data to Files

Set the Handler of Geant4

Define the number of Events to be proceed
Invoke running

Load the Library

20

Event Data Model

u Definition of Event Information and correlation in
different processing stages

u Key component and important for the software
performance

HepMC

21

Event Data Model

u Event Objects are based on ROOT TObject
u One EDM both in memory and ROOT files to avoid conversion
u For each stage, Two-layer definition: HeaderObject and EventObject
u SmartRef for the correlation and supporting data-lazy loading

22

XOD: EDM Generation Toolkit
u Use XML file to define EDM
u XOD is developed to automatically generate class codes

MCTrack.xml MCTrack.h

23

MCEvent

MCPoint

24

ROOT Input/Output System
u General RootInputSvc/RootOutputSvc

ð RootInputSvc: read Event Data from Root Files to Data Store
• Correlation between header and event will automatically build up

ð RootOutputSvc: write Event Data from Data Store to Root Files
• Root Files could be analyzed with root macro scripts

ð All Event data can be read/written automatically with current IO system

DataStore ROOT File
25

Generator
u Babayaga

ð e+e- --> e+e-, µ+µ-, γγ and π+π-

QED processes at flavor factories

u Phokhara
ð e+e- annihilation into hadrons plus an energetic

photon from initial state radiation (ISR)

u KKMC
ð Charmonium production with beam spread

and ISR
EvtGen

Babayaga, Phokhara and KKMC are working in OSCAR
EvtGen will be ready soon

u EvtGen
ð Charmonium decays

26

Detector Simulation Framework
u OSCAR manages detector simulation with Task，

ðThe algorithm (DetSimAlg) for all sub-detectors simulation
ðThe service (G4Svc) to launch Geant4 within OSCAR
ðThe user-end service(DetSimFactory) to set up the Geant4 related classes
ðThe user-end service(AnalysisElement) to retrieve G4Event and create

Event Data in Data Store

27

Detector Geometry Description :DD4hep

u Used by ILC and CLIC, FCC, CEPC, STCF and SCT …
28

n Use XML file and C++ driver to build Detectors

29

u Define geometry and materials in xml files

Detector Description with DD4hep

n Construct detector in c++ driver files

n Deliver detector geometry to Geant4

30

Detector Geometry Management
n Sub-detectors are described with DD4hep
n Each sub-detector is independent with others, different version in different path
n Flexible to build a full detector with different combinations of sub-detectors
n Common files for materials and elements

31

Detector Visualization
u Sub-detectors can be displayed individually with geoDisplay Plugin

Vertex Detector Main Drift Chamber RICH

DIRC Calorimeter Muon Detector

32

Detector Visualization

33

Set up Full Detector Simulation Chain
Display of a Event: e+ e- @Ecm =7GeV

Geometry was initialized with DDG4
from xml file

34

Reconstruction
u MDC

ð Single tracking study

u EMC
ðSeed finding
ðClustering

u PID
ð DIRC: ML method
ð Muon: BDT method

35

Installation, documentation and SVN

u The latest version of OSCAR is installed in USTC nodes
ð stcf01.ustc.edu.cn
ð stcf01.ustc.edu.cn

u Installation
ð Automatic installation of the whole offline software with a shell script
ð svn export http://202.141.163.202/svn/oscar/installation/trunk/setup-trunkj.sh

u Documentation
ð OSCAR User Guide

• http://cicpi.ustc.edu.cn/indico/getFile.py/access?contribId=1&resId=0&materialId=slides&confId=1610

u SVN repository
ð http://202.141.163.202/svn/oscar/

36

Summary and Outlook
u OSCAR is developed for STCF

ðBased on SNiPER and DD4hep
ðEvent Data Management
ðData proceeding management
ðCommon Services and User interface
ðServe as the unifed platform for application development

u Lots of progress have be made
ðGenerators: Babayaga, Phokhara and KKMC
ðDetector geometry description with DD4hep: modular and flexible
ðDetector geometry management: Xml->Geant4-> ROOT->Recon.
ðEvent data model: currently based on ROOT
ðRoot Input/Output System
ðThe detector simulation chain has been setup
ðDevelopment of reconstruction algorithms is in progress

37

Summary and Outlook
u Lots of works ahead, more people are welcome

ð Event Data Model for Simulation and Reconstruction
ð Generator framework: More generators and Unified interface
ð Optimize detector description:

• Missing parts, precision description, digitization and realization
ð Study of Calibration and Reconstruction methods
ð Compare sub-detector performances between simulation and beam testing.

u Setup a full chain from generator to reconstruction for
optimization of Detector design and performance study.
ð Tracking efficiency
ð Energy, Momentum, position resolutions
ð Discrimination of electron/pion, muon/pion, kaon/pion

u Keep eyes on the new development of the community
ð DD4hep: common Detector Description (already used by STCF)
ð EDM4hep: common Event Data Model (STCF prototype for testing)
ð Key4hep: common Software Stack

38

Thanks for your attention!

