Status and Plan of STCF Software

Xingtao Huang (SDU)
On behalf of the STCF Software Group

EicC-STCF Joint Meeting
University of Science and Technology of China, Hefe1
Feb 21 - 22, 2020

Outline

STCEF Offline Software System
Framework

Event Data Model

Generator

Detector Simulation
Visualization

Reconstruction

Summary and Outlook

Overview of STCF Software System

OSCAR: Offline Software of Super Tau-Charm Facility

ExLibs

DD4hep ROOT Geant4d HepMC
CLHEP Boost Python

¢ External Libs: Frequently used third-party software and tools.

¢ SNIiPER Framework: Providing Data Processing Management, Event data
Management, Common Services, User Interface ...

¢ Offline : Specific to the STCF Experiment, including extensions to SNiPER,
Generator, Simulation, Calibration , Reconstruction and Analysis

Minimum Requirements of Users

Python Ul Layer runa batch job or interactively debug a module Physicists
Modify/Resue algorithms and run jobs
Application Layer (C# and Python)

Users focus on their works:
Do not care where the |1, et data from memory | Donot care where

datacomesfrom |2 execute calculation | the datawill go

Application Developers

3. put results back to Write new Algorithms and configuration files
% memory / (C++ and Python)
A\ //
Framework Layer /
Application Management Event Data Management Framework Developers
-Load and plugin app. (algs.) -Manage event data

Mangeand executeapp.algs| OI\N|PER | Senddatatousers’algs. | | p.ovide main functions for HEP data
-Get results from users’ algs.

-Interfaces, services , etc. processing
1/0: disk, DB, network, grid.. (C++, Python, SQL, multi-thread,...)

4

SNIiPER Framework

SN1PER: the “Software for Non-collider Physics ExpeRiment”

= Developed for JUNO experiment ,also considered for other
physics experiments

= Used by JUNO,LHAASO ,STCF, nEXO
= Being Investigated by HERD

The Design Goals

= Lightweight, less dependences on third-party software/libs
= Fast and flexible execution

= Easy to learn and convenient to use

A Good Team to maintain and optimize
= SDU and IHEP

Main Features of SNIPER

Highly modular

Dynamically loading packages/modules/elements
Standard 1nterfaces between different modules
Separation between data and algorithm

Data Store for event data management

Flexible event execution

= Sequential and Jump/nested execution

Support multithreading
= Underlying the intel TBB 1s deployed

Key Components of SNIPER

User Interfaces (Dynamically Loadable Elements)

= Algorithm DleManager
= Service create(string)
get<type>(string)
= Task ?
Data Store
DIElement
P DIElement(string) IListener
B I‘Op erty name() register(MsgType)
T . type() register(string)
) qogglng A handle(IMessage)
Parallelism o
AlgBase SvcBase Task
initialize() P addAlg(name, scope)
execute() If':‘r:taIﬁ::?)O addSvc(name, scope)
finalize() addTask(name, scope)

T T T

Algorithm

An unit of code for event execution
= Perform event calculation during event loop

= Users only focus on processing “One Event”
Framework provides the interface, AlgBase

User’s new algorithm inherits from AlgBase
= Its constructor takes one std::string parameter

= 3 member functions must be implemented
 bool initialize() : called once per Task (at the beginning of a Task)
* bool execute() : called once per Event
* bool finalize() : called once per Task (at the end of Task)

Then, the new algorithms can be called by Framework

Example: HelloAlg

7 class HelloAlg: public AlgBase {

8

9 public:
10 HelloAlg(const std::string& name);
11 ~HelloAlg () ;
12
13 bool initialize():;

14 bool execute();

15 bool finalize();

16

17 private:

18 int m count;

19 std::string m string;
20

Service

Similar with Algorithm, but

= A piece of code for common use, 1.e. GeometrySvc,
DatabaseSvec...

= They are called by algorithms or other services, wherever needed

Framework provides the interface, SvcBase

New services inherits from SvcBase
= Its constructor takes one std::string parameter

= 2 member functions must be implemented
 bool mitialize() : called once per Task (at the beginning of a Task)
 bool finalize() : called once per Task (at the end of Task)

10

Example: HelloSvc

7 class HelloSvc: public SvcBase {

8

9 public:
10 HelloSvc (const std::stringé&
11 ~HelloSvc () ;
12

13 bool i1nitialize();
14 bool finalize();

15 volid doSomething () ;
16

11

Existing Services

Data Store Management Service
Detector Geometry Construction Service
Unified Geometry Provider Service
Random Number Service

Database Service

Root File Input/Output Service

Root Histogram/N-tuple Service

12

Task

¢ A lightweight application manager
= Consist of algorithms, services and sub-tasks
= Control algorithms’ execution

= Has 1ts own data store and I/O system (see next slide)
¢ One job can have more than one Tasks

¢ The objects of algorithms or services are organized in a tree

structure [TopTask

=

v

- L[{ SubTasl: \]
‘)
‘ LL[SubTask\J

13

Python Script Example

import Sniper

task = Sniper.Task("task")
#task.asTop ()
task.setLogLevel (3)

import HelloWorld

alg = task.createAlg("HelloAlg/hAlg™)
alg.property("VarString") .set ("some value")
alg.createTool ("HelloTool/htool™)

svc = task.createSvc("HelloSvc/hSvec")
task.setEvtMax (5)

task.show ()
task.run ()

Data Store

It 1s the dynamically allocated memory place to hold
event(s) which are being processed

Algorithms get event data from the Data Store and
update/add event data after executions

I |
: i : - M.C. data related
I

@ Data Store: central place for - raw data related
holding and sharing Event data \

15

Interfaces for access to Data Store

DataStoreMgr 1s to adopt Event Data in DataStore under

a certain path

simHeader->setEvent(simEvent);
SniperPtr<IDataStoreMgr> mMgr(getParent(),
mMgr->adopt(simHeader,) :

simEvent->setNtracks(m 1Evt);

EvtDataPtr 1s to retreive Event Data from DataStore with
a unique path

EvtDataPtr<0SCAR: :StcfGenHeader> edp(this->getRoot(),
0SCAR: :StcfGenHeader* header = edp.data();

0SCAR::StcfGenEvent* event = header->event():
event->pEvt()->print();

16

Property :set parameters at runtime

Configurable variable at run time

Declare a property in DLElement(Alg, Sve, Tool and Task)

declProp ("MyString", m str);

Configure a property in Python script

alg.property ("MyString") .set ("string value")

Types can be declared as properties:
= scalar: C++ build in types and std::string
= std::vector with scalar element type
= std::map with scalar key type and scalar value type

17

Logging : manage output message

SniperLog: a simple log mechanism supports different
output levels

0: LogTest LogDebug << "A debug message" << std::endl;
pANEIENITY LogInfo << "A message" << std::endl;
3: LoglInfo LogError << "An error message" << std::endl;
4: LogWarn aHelloAlg.execute DEBUG: A debug message
S: LogError aHelloAlg.execute INFO: An info message
6: LogFatal |EREIREY: Ny EYelitn= ERROR: An error message

Each DLElement(Alg,Svc,Tool, Task) has its own
LogLevel and can be set at run time
= very helpful for debugging

The output message includes more information , such as
= where it happens
= message level
= message contents

18

Parallelism

SniperTbbTask in Thread #1
Muster I‘ P
spawn (N) II Thread Local Thread Local
Algorithm #1.1 Service #1.1
SniperTbbTask in Thread #2
Global Res.

<

/0

II Thread Local Thread Local
Algorithm #2.1 Service #2.1
[

Thread Local

L]
- = = ® Resource Copies

[] e e — - .

¢ Developed based on Intel TBB to Support event level parallelism

= Muster: Multiple SNiPER Task Scheduler
= SniperTbbTask: Binding of a SNiPER Task to a TBB task

¢ Global DataStore to provide events for multi-tasks (or multi-threads)
¢ A dedicated task(thread) is used to read/write event data from/to files

19

A typlcal Job configuration file
Load the Library

task = Sniper.Task(

task.setLogLevel (3) Setup a TaSk
import DetSimAlg

215 proparty ("DetFactory™) 'y Add algorithm into the Task

import OSCARSim
tool = alg.createTool (

tool.property (. DEﬁne DetECtOl' Geometry
)

tool.property(

import DataStoreMgr

task.createsve| Define Event Manager

oSve = task.createsve| , Output Event Data to Files
: })

oSvc.property (

import G4Svc
gisve = task.createsve Set the Handler of Geant4

import DemoSim
factory = task.createSvc()
factory.property () .set ([1)

task.setevrmax o) Define the number of Events to be proceed

task.show ()

task.run () Invoke running

Event Data Model

¢ Definition of Event Information and correlation in
different processing stages

¢ Key component and important for the software
performance

—==T =
Data Store (Memory) HepMC Files

Raw Data Files

ROOT Files

=)

Event Data Model

IEventObject TODbject
E

I

Event()

0 *"1&
m—>4 3|8
0 g |0 1R
-

Event Objects are based on ROOT TObject
One EDM both in memory and ROOT files to avoid conversion

For each stage, Two-layer definition: HeaderObject and EventObject
SmartRef for the correlation and supporting data-lazy loading

22

XOD: EDM Generation Toolkit
Use XML file to define EDM

XOD 1s developed to automatically generate class codes

CINT/

- - m

MCTrack.h

class MCTrack: public TObject
{

private:

CTrack.xml

I xml version= T ing=
<!DOCTYPE xdd SYSTEM >
<xdd>

<package name >

Int t m_PdgCode;
TLorentzVector m_ FourMomentum;
Int_t m_MotherID;

Int t m_GeneratorFlags;
TLorentzVector m_StartVertex;
TLorentzVector m_StopVertex;

<import n
<import n
<import n

<class name

<base name nst Int_té& PdgCode() const;

<attribute void setPdgCode (const Int t& value);

const TLorentzVector& FourMomentum() const;

<attribute

TLorentzVector& FourMomentum() ;

MCEvent

TObject
A

e ==
EcALH 1 T
RICHHit RICHPoint
MDCHit MDCPoint
MUDHI MUDPoint

DIRCBarHit DIRCBarPoint

ROOT Input/Output System

General RootInputSvc/RootOutputSvce

= RootInputSvc: read Event Data from Root Files to Data Store

» Correlation between header and event will automatically build up
= RootOutputSvc: write Event Data from Data Store to Root Files
* Root Files could be analyzed with root macro scripts

= All Event data can be read/written automatically with current IO system

-3 DIRCEvent root
=t ‘A Event;1
=1-“_A DIRCEvent;1

% |header;1

[=)- % | DIRCEvent;1

=- 24 DIRCEvent
ﬁ EventOhbiject

3% m_Primary Energy
3% m_PhotoMu

3% m_QuartzID
% m_EnergyDep
% m_TagMu

3% m_SectorID

3% m_ChannellD
- 3% m_PhotonKinetic
3% m_WaveLlength
% m_GlobalTime
% m_LocalTime
% m_TrackLength
X m_Decay Chain

] Process IDO;1

[CAMeta;t

DataStore ROOT File

Th

25

Generator Name: Babayaga

Generator

Channel: 1:e’e” — (ny)e'e”
2:e’e > (ny)u'w
3:e'e” - (ny)yy

4:e’e” - (ny)n'n”

Bab a a a C.M. Energy = 2* E,,,,
y g Running o : O=off, 1=on
FSR switch (for ICH=2): O=0ff,1=0n

+ A= + Q- +, - + - ---cuts: +r—
I:> e e --> e e 3 M M 5 yy and TE T[fchar‘ged particles: E,;, (MinimumEnergy), Al
QED processes at flavor factories s o
MaximumAcollinearity 2(ntn)
photons : M'inEnergyCuTG b
Phokhara Nongins s
nnbar
= e*e annihilation into hadrons plus an energetic KK
photon from initial state radiation (ISR) Kk,
mtand
KKMC s
= Charmonium production with beam spread KIKMC EviGen
and ISR ‘

EvtGen

= Charmonium decays

Babayaga, Phokhara and KKMC are working in OSCAR
EvtGen will be ready soon

26

Detector Simulation Framework

OSCAR manages detector stmulation with Task,
=> The algorithm (DetSimAlg) for all sub-detectors simulation
= The service (G4Svc) to launch Geant4 within OSCAR

= The user-end service(DetSimFactory) to set up the Geant4 related classes

= The user-end service(AnalysisElement) to retrieve G4Event and create
Event Data 1n Data Store

(" _
—
(e) [owrarnracen)

/ \ DataStore f DetectorConstructlon J \
E PhysicsList J
i (PrimaryGeneratorAction j
Geant4 IS (RunAction J
AnalysisElement j < (EventAction)
(stackingAction)
[TrackingAction J
\ / R, FStepingAction j

27

Detector Geometry Description

DD4hep — Overview

7\
\ N
>
O
>

» Complete Detector Description
» Providing geometry, materials,

. . . . Basics
wsgahzghon, readout, alignment, Geometry handing
calibration. .. STABLE

» Supports full experiment life cycle Conditions and

Alignment support
» Detector concept development, detector FIRST RELEASE
optimization, construction, operation Simulation interfac
» Facile transition from one stage to the next DDAlign Seantt
» Single source of information — consistent
description
» Use in simulation, reconstruction,
analySiS’ etc. Reconstruction interface Geometry vigualization
< STABLE > Event Display
» Ease of Use BASIC

» Few places for entering information
» Minimal dependencies

A. Sailer DD4hep and Shareable Detector Geometry Description - HK DetSoft, Jan 17, 2020

Used by ILC and CLIC, FCC, CEPC, STCF and SCT ...

28

B Use XML file and C++ driver to build Detectors

Detector XML ©) AIDA @

<detector
» XML structure to set parameters for detectors name='ECalBarrel
]) type="GenericCalBarrel_ol_vO1"
» C++ driver to interpret XML parameters and create id="42" readout="ECB">
DetElements and Volumes <dimensions
»—Befinesansitive-tartetattachad-with numsides="ECalBarrel_symmetry"
Ty e e Ammemrm e rmin="ECalBarrel_inner_radius"
SensitiveDetector) and radiator. which has to be poa oo s s v oo .
known fg —
. PN
. [|
> Attach sensif Detector Driver &) AIDA
in XML A
<readout namg
<segmentatj

» C++ model of separation of ‘data’ and ‘behaviour’

<id>...x:3] P Drivers return single ‘reference’ to the

</ dout> :
readon DetElement ObJeCt static dd4hep::Ref_t create_element (

dd4hep: :Detector& description,

xml_h element,

dd4hep: :SensitiveDetector sens) {
xml_det_t e = element;
DetElement aDetector(e.nameStr(), e.id());
/7. ..
sens.setType("calorimeter");
/7. ..

return aDetector;

}
DECLARE_DETELEMENT (AName, create_element)

A. Sailer DD4hep and Shareable Detector Geometry Description - HK DetSoft, Jan 17, 2020

Detector Description with DD4hep

Define geometry and materials in xml files

-bash-4.1% 1s

detectorDIRC.xml detectorMUD.xml detectorVTD. xml STCFECAL. xml
detectorECal.xml detectorPID.xml materials02. xml STCF_test.xm
detectorMDC. xml detectorRICHBarrel.xml elements02.xml materials. xml STCF. xml
detectorMUC. xml detectorSC. xml elements. xml muondetector2. xml

B Construct detector in c++ driver files

-bash-4.1% 1s

AirTube_geo.cpp DIRC_geo.cpp SCTube_geo.cpp Tracker_geo.cpp
BarrekDIRC_geo.cpp InnerPlanarTracker_geo.cpp STCF_BEMC_geo.cpp TrackerSupport_geo.cpp
detectorMUD.cpp PolyhedraEndcapCalorimeter2_geo.cpp STCF_EEMC_geo.cpp ZPlanarTracker_geo.cpp

B Deliver detector geometry to Geant4

DetGeoConsSvc
myxmlsvc = task.createSvc/(

myxmlsvc. (
myxmlsvc. (

30

Detector Geometry Management

B Sub-detectors are described with DD4hep

B Each sub-detector is independent with others, different version in different path
B Flexible to build a full detector with different combinations of sub-detectors

B Common files for materials and elements

——————————————————
{ MUD. xml '
ECAL. xml '—

RICH. xml '—
STCF. xml }

DIRC. xml '—
MDC. xml F

VTD. xml '—

31

Detector Visualization

Sub-detectors can be displayed individually with geoDisplay Plugin

Vertex Detector Main Drift Chamber RICH

DIRC Calorimeter Muon Detector

32

Detector Visualization

33

Set up Full Detector Simulation Chain

STCF. xml

Display of a Event: e+ e- @Ecm =7GeV
Geometry was initialized with DDG4
from xml file

o ———— — —— ——— —

DetSimAlg

g iy g g P —

-718 DIRCEvent root
-] Event;1

Data. root D Process|DO;1

[Meta;1
-] StefGeom;1

34

Reconstruction

MDC
= Single tracking study

EMC

I:> S eed ﬁnding Egé@%@%jﬁiﬁ%& Hittap 1000? Mean=0.1239GeV

. I Sigma=0.0065
E> ClUSterlng —— 800;Sigma/Mean=5.25%
PID 400

¢ 200
/ ol Lo Lol i A B i
_ o 002 004 006 008 01 012 014 _ 016

ShowerMap. mo[GeV]

= DIRC: ML method
e
= Muon: BDT method

1.5GeV T HERENERER

e
Eile Edit View Options Tools Helg
" + i & Cut efficiencies and optimal cut value
—— '} 1
- :3' proton fOCUS ve Signal efficiency ——— Signalpurity
2 || e Signal efficiency*purity
? 3 o i kao n_ . Background efficiency S/{S+B
C 72i7em £ ¢ 0 &
x ; T 1 30 §
— -~ pion- : j %0 §
) < P -
> FLA T 125 5
g § 0.8 ’r = #
- S { I". \ 20
E ‘ k
w

o o
IS o
T
1,
3,
~
|
2 g
4
i
H L
a"
/
IEENSEEEEEEn.E
= =
o]

0.2 —For al-and-1000 background 15
A A A i A i i i i A A A A A A A A A A A E events ‘hem s/ S‘B Is -
0 10 20 30 40 50 60 [30.19 when cutting at -0.19 Ly]
PP I I IV PP IO I P — TR N S
Channel ID a5 04 072 02 .04 0 04 02 02 04

35

Installation, documentation and SVN

The latest version of OSCAR 1is installed in USTC nodes

= stcfO1.ustc.edu.cn
= stcf01.ustc.edu.cn

Installation

= Automatic installation of the whole offline software with a shell script
= svn export http://202.141.163.202/svn/oscar/installation/trunk/setup-trunkj.sh

Documentation
= OSCAR User Guide

» http://cicpi.ustc.edu.cn/indico/getFile.py/access?contribld=1&resld=0&materialld=slides&confld=1610

SVN repository
= http://202.141.163.202/svn/oscar/

36

Summary and Outlook

OSCAR is developed for STCF
= Based on SN1PER and DD4hep
= Event Data Management
= Data proceeding management
= Common Services and User interface
= Serve as the unifed platform for application development

Lots of progress have be made
= Generators: Babayaga, Phokhara and KKMC
= Detector geometry description with DD4hep: modular and flexible
= Detector geometry management: Xml->Geant4-> ROOT->Recon.
= Event data model: currently based on ROOT
= Root Input/Output System
= The detector simulation chain has been setup

= Development of reconstruction algorithms is in progress
37

Summary and Outlook

Lots of works ahead, more people are welcome

= Event Data Model for Simulation and Reconstruction

= Generator framework: More generators and Unified interface
= Optimize detector description:

» Missing parts, precision description, digitization and realization
= Study of Calibration and Reconstruction methods

= Compare sub-detector performances between simulation and beam testing.

Setup a full chain from generator to reconstruction for

optimization of Detector design and performance study.

= Tracking efficiency
= Energy, Momentum, position resolutions
= Discrimination of electron/pion, muon/pion, kaon/pion

Keep eyes on the new development of the community

= DD4hep: common Detector Description (already used by STCF)
= EDM4hep: common Event Data Model (STCF prototype for testing)
= Key4hep: common Software Stack

38

Thanks for your attention!

