Gluonic Probe for the Short Range Correlations in Nucleus

Feng Yuan Lawrence Berkeley National Laboratory

Xu, Yuan, PLB 801, 135187 (2020) Hatta, Strikman, Xu, Yuan, PLB 803, 135321 (2020)

Rutherford scattering

The Scattering of α and β Particles by Matter and the Structure of the Atom

3/4/20

Quantum Chromodynamics

- There is no doubt that QCD is the right theory for hadron physics
- However, many fundamental questions...
- How does the nucleon mass emerge from the light quarks dynamically?
- Why quarks and gluons are confined inside the nucleon?
- How do the fundamental nuclear forces arise from QCD?
- We don't have a comprehensive picture of the nucleon structure as we don't have an approximate QCD nucleon wave function

observables

Where do heavy elements come from?

How does the nuclear chart emerge from QCD?

How to predict properties of nuclei?

BERKELEY LA

Nucleon momentum distribution inside nucleus

Basic Picture

rerecci

BERKELEY LAB

7

What is short-range correlation

Neutron-proton close in coordinate space
 Momentum space

 Low total momentum
 High relative momentum

3/4/20

Three Different Ways to Probe the SRC

Momentum distribution of nucleons Limited to low momentum region Knock out experiments Hard partonic processes: structure function modifications □ EMC effects Fast moving partons (Structure function at x_B>1)

JLab's major Activities: Quark

EMC: nuclear modification of structure functions

DIS structure function measures the parton distribution in nucleon/nucleus

3/4/20

Universality of SRC Contributions

- Different processes
 - Same SRC pair contribute to different hard processes
 - Universal partonic structure
- Different nuclei

Only depend on the probability of the SRC pair, nuclear dependence same for different processes

Link different nuclei by the SRC factors

Universality: Quark Sector

Highlights from LRP 2015 13

3/4/20

Gluonic probe for SRC at an Intermediate Energy EIC

- Kinematic focus will be in the EMC region
 Energy is high enough to study heavy flavor production

 Charm Structure Function
 Sub-threshold production of open Charm and Charm series
 - Charmonium

Polarized Electron-Ion Collider in China EicC EicC Accelerator Complex

CECE

BERKELEY LAB

Designed Energy and Luminosity

Gluon distribution in nucleus: SRC contributions

Because of isospin symmetry:

$$g_A(x,Q^2) = Ag_p(x,Q^2) + 2n^A_{src}\delta\tilde{g}(x,Q^2)$$

Compare to the quark sector

$$F_2^{A} = (Z - n_{SRC}^{A})F_2^{p} + (N - n_{SRC}^{A})F_2^{n} + n_{SRC}^{A}(F_2^{p*} + F_2^{n*})$$

SRC Factor: n^Asrc

$$= ZF_2^p + NF_2^n + n_{SRC}^A \left(\Delta F_2^p + \Delta F_2^n\right)$$

3/4/20

EMC Effects in Charm F₂ at EicC

Universality of the nuclear modifications

 $Q^2 = 10 \text{ GeV}^2$, $\sqrt{s} = 10.95 \text{ GeV}$

Quark sector: Isospin dependence

Universality of SRC: two facts

EMC effects for different nuclei can be described by the same universal SRC contributions
 Quark/gluon shall differ
 The same SRC factor for both quark and gluon sectors

Jpsi production: build a model for SRC contributions

Jpsi production in photo-nuclear collisions

 $\sigma_{\gamma A \to J/\psi}(\sqrt{s_{\gamma p}}) = A \sigma_{\gamma p \to J/\psi}(\sqrt{s_{\gamma p}})$ $+ n^{A}_{src}(\sigma_{\gamma(pn)\to J/\psi}(\sqrt{s_{\gamma p}}) - 2\sigma_{\gamma p\to J/\psi}(\sqrt{s_{\gamma p}}))$

Below the photon-proton threshold

3/4/20

 $\sigma_{\gamma A \to J/\psi}(\sqrt{s_{\gamma p}} < M_p + M_{J/\psi}) = n^A_{src}\sigma_{\gamma(pn) \to J/\psi}(\sqrt{s_{\gamma p}})$

22

Universality

$$\frac{\sigma_{\gamma A \to J/\psi}(\sqrt{s_{\gamma p}} < M_p + M_{J/\psi})}{\sigma_{\gamma d \to J/\psi}(\sqrt{s_{\gamma p}} < M_p + M_{J/\psi})} = \frac{n_{src}^A}{n_{src}^d} = \frac{F_2^A(x_B)}{F_2^d(x_B)}|_{1.5 < x_B < 2.0}$$
(See also: Paryev, 1510.00155)

However: Mean Field Contributions

3/4/20

Example: Deuteron Case

 $\int d^3k\rho_n(k) = 1$

$$\sigma_{\gamma D}(W_{\gamma p}) = 2 \int d^3k \rho_n(k) \widetilde{\mathcal{F}}(k) \sigma_{\gamma p}(W_{\gamma p'})$$

Nucleon's

Momentum distribution

Nucleon momentum distribution in deuteron

Photon-proton cross sections: Recent JLab Measurement

Sub-threshold Jpsi production in photon-deuteron collisions

Generic nucleus: spectral function

$$\sigma_{\gamma A} = A \int d^3k d\epsilon \rho_A(k,\epsilon) \widetilde{\mathcal{F}}(k,\epsilon) \sigma_{\gamma p}(W_{\gamma p'})$$

 Spectral function describes nucleon momentum and energy distribution
 Mean field: Gaussian distribution with width k_F/2

SRC contribution has to be calculated

Spectral function from SRC

Proton: (pn) and (pp) pair

$$\rho_A^{(SRC)p}(k,\epsilon) = C_{pn}^1 S_{pn}^1(k,\epsilon) + C_{pn}^0 S_{pn}^0(k,\epsilon) + 2C_{pp}^0 S_{pp}^0(k,\epsilon) ,$$

• Contacts:
$$C_{pp}^0 = C_{nn}^0 = 1.140\%$$
,
 $C_{pn}^0 = 1.244\%$, Carbon-12
 $C_{pn}^1 = 15.876\%$.

Duer et al., PRL 122, 172502 (2019)

3/4/20

Sub-threshold production in photon-Carbon collisions

16% SRC
84% MF

3/4/20

SRC Universality

Cross section ratios only depend on the probability of SRC pair

$$\frac{\tilde{\sigma}_{\gamma A \to J/\psi}}{\sigma_{\gamma d \to J/\psi}}\Big|_{E_{\gamma} \sim 7 \text{GeV}} = \frac{n_{src}^A}{n_{src}^d} = \frac{F_2^A(x_B)}{F_2^d(x_B)}\Big|_{1.5 < x_B < 2.0}$$

The same ratios measured from structure functions beyond x_B~1 at JLab

Example: Carbon-12

Corrections: Nuclear Absorption

$$\frac{1}{A} \int d^2 \vec{b} dz \rho_A(\vec{b}, z) \exp\left(-\int_z^\infty dz' \sigma_{eff} \rho_A(\vec{b}, z')\right)$$

Effective Abs. cross section ~ 4mb

Modification is proportional to A^{1/3}
 For Carbon-12, less than 10%
 For heavy nucleus, like Pb, about 30%

BERKELEY LAB

34

SRC Scaling

Sub-threshold Charm and Bottom Quarkonium production

$$\frac{\bar{\sigma}_{\gamma A \to J/\psi}}{\bar{\sigma}_{\gamma d \to J/\psi}} \bigg|_{E_{\gamma} \sim 7 \text{GeV}} = \frac{\bar{\sigma}_{\gamma A \to \Upsilon}}{\bar{\sigma}_{\gamma d \to \Upsilon}} \bigg|_{W_{\gamma p} \sim 9.7 \text{GeV}}$$
$$= \frac{n_{src}^{A}/A}{n_{src}^{d}/2} = \frac{F_{2}^{A}(x_{B}, Q^{2})/A}{F_{2}^{d}(x_{B}, Q^{2})/2} \bigg|_{1.4 < x_{B} < 1.8},$$

*Cross section per nucleon

3/4/20

Universality: Gluon Sector

Summary

- Heavy flavor production in eA collisions provide the gluonic probe of the nucleonnucleon short range correlation in nucleus
- Charmonium (Jpsi) can be easily measured at Jlab
- Charm structure function and Upsilon can be studied at EIC in China

Back-ups

3/4/20

SRC Scale Factor

Nucleus	This work		
	<i>a</i> ₂	a_2^p	a_2^n
³ He			
⁴ He			
⁹ Be			
^{12}C	4.49±0.17	4.49±0.17	4.49±0.17
²⁷ Al	4.83±0.18	5.02±0.19	4.66±0.17
⁵⁶ Fe	4.80±0.22	5.17±0.24	4.48±0.21
⁶³ Cu			
¹⁹⁷ Au			
²⁰⁸ Pb	4.84±0.20	6.14±0.25	3.99±0.17

CLAS Coll., Nature 2019

2012 High-Momentum Scaling

BERKELEY LAB

Nucleon momentum distribution in Carbon

ffff

BERKELEY LAB

44

Finite size of nucleon (charge radius)

Rutherford scattering with electron

Hofstadter

Renewed interest on proton radius:

3/4/20

RevModPhys.28.214