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1 What is Gaussian Process [1]
Definition 1.1. (Gaussian Process) A sequence of random variables f1, f2, f3, · · · , fn, · · · are
called a Gaussan process iff any combination of these random variables satisfies (multivariable)
Gaussian distribution.

∀i, j, k, · · · ∈ N, (fi, fj , fk, · · · ) ∼ N(µ,Σ)

Example 1.1. The Gaussian Process we are using is:

A sequence of random variables f(x1), f(x2), · · · labeled by x1, x2, · · · is a Gaussian process
if they satisfy the multivariable Gaussian distribution

N(µ,Σ)

where µ is mean and Σ is covariance matrix. and satisfies ΣT = Σ. The matrix elements are
Σij = Σji

We confine our discussion to a predefined mean and variance by a mean function and
covariance function(They are functions of labels x). We define Σij = Σij(xi, xj) (to only
depend on xi and xj)

µ = µ(x1, · · · ), Σ(x1, · · · ;x1, · · · ) =

 Σ11(x1) Σ12(x1, x2) · · ·
Σ21(x1, x2) Σ22(x2) · · ·

...
... . . .


The covariance matrix is called Kernel in Bayesian Optimization and is crucial for the

algorithm. It mainly describes the possible correlation between function values at different
points, like Σ(x1, x2) describes the correlation between f(x1) and f(x2), as in fig. 1

Figure 1: A visualization of a kernel. x1 and x2 is represented by t and t′, which is also
represented by the x and y axis. The color of the graph represents the value of the kernel
matrix.

Theorem 1.1. The conditional and marginal distribution of a Gaussian is also Gaussian. [2]
Suppose X = (X1, X2, · · · , Xn) ∼ N (µ,Σ), then
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Figure 2: prior: estimate/prediction of function values without any information; posterior: es-
timate of function values with the information of f(x1). Shaded parts indicate the σ values at
each point.

1. Xi ∼ N(µi,Σii)

2. conditional probability

xn |X1 = x1, · · · , Xn−1 = xn−1 ∼ N(µ, σ) (1)

where

µ = µn +Σn,[1:n−1]Σ
−1
[1:n−1],[1:n−1](y)

 x1 − µ1

...
xn−1 − µn−1


σ = Σnn − Σn,[1:n−1]Σ

−1
[1:n−1],[1:n−1]Σ[1:n−1],n

Despite the complicated expression, we only need to take away that they are calculable.

Posterior distribution

eq. (1) implies that if we have observed the values f(x1), f(x2), · · · , f(xn−1) in our Gaus-
sian process, we could infer the distribution of f(xn). This is called posterior distribution.

f(xn) ∼ N(µ(xn), σ(xn)))

2 Bayesian Optimization [3]
The whole algorithm utilizes the Gaussian process defined in our Example 1.1. Taking an
unknown function f , we construct a Gaussian process as defined earlier.1 After probing the
function value at one point, say, f(x1), utilizing eq. (1), we can predict the the function value of
next point f(x2) and so on. The prediction will become more and more precise after iterations.
This is shown in fig. 2

2.1 Probing the function
The algorithm looks as follows:

The process of determining xi+1 is called acquisition function

Definition 2.1. The next point is the determined as the extremum of acquisition func-
tion F .

xi+1 = argmax
x

F (x) or argmin
x

F (x)

1Which assumes the function values at all points are random variables.
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Algorithm 1: probing the function
Result: The prediction of function values
probe a random point x1;
while probed points i < desired number of points to be probed do

update prediction of function values according to eq. (1);
find out the next point xi+1 to probe;
probe the next point f(xi+1);i++;

Example 2.1. (active learning) F = σ(x), xi+1 = argmax
x

f(x), meaning that the point with
the greatest uncertainty should be probed. As a result, the algorithm ’learns’ and predicts the
unknown function better and better after each iterations.

2.2 Bayesian optimization
Now, we don’t want to know how the entire function behaves, we want to find the extremums.
Therefore, we want to just probe the points that gives a high promise of maximum. Acquisition
function can be chosen as follows:

Acquisition Function: probability of improvement (PI)

Example 2.2. probability of improvement (PI)

F = P (f(x) ≥ f(x+) + ε) = Φ

(
µ(x)− f(x+)− ε

σ(x)

)
, xi+1 = argmax

x
F (x)

where x+ represents the current maximum, Φ indicates CDF. This acquisition function
chooses the next query point as the one which has the highest probability of improvement
over the current max f(x+) + ε

Example 2.3. expected improvement (EI) choose the next query point as the one which has the
highest expected improvement over the current max f(x+)2

Example 2.4. Thompson Sampling. At every step, we sample a function from the surrogate’s
posterior(according to posterior distribution) and optimize it. See fig. 3

Figure 3: Thompson Sampling

2.3 exploration vs exploitation
We don’t know if we are stuck at the local maxima or near the global maxima. Therefore
we need to balance exploring uncertain regions, which might unexpectedly be global max-
ima(exploration), against focusing on regions we already know have have a large function

2details see https://people.orie.cornell.edu/pfrazier/Presentations/2018.11.INFORMS.tutorial.pdf
https://thuijskens.github.io/2016/12/29/bayesian-optimisation/
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value (a kind of exploitation). This can be done by adjusting the parameters of the acquisi-
tion function. Example using PI as acquisition function is shown in figs. 4 and 5

Figure 4: setting ε = 0.075 to be small means we only need a small improvement, resulting the
next search point to be near local maxima

2.4 sequential domain reduction
As the title suggests [4].
https://github.com/fmfn/BayesianOptimization/blob/master/examples/domain_reduction.ipynb

3 Convergence
In principle, the Bayesian optimization algorithm just does a ”fit” to our unknown function. The
function values probed might not be always increasing, or converging to the maxima.

The sequential domain reduction looks like could converge because the domain is getting
smaller and smaller thus could converge. Details are discussed in [4]
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