Net-proton fluctuation analysis at 3.22 GeV

Fan Si

Mar. 14th, 2022

Dataset

Au+Au @ 3.22 GeV (4.59 GeV FXT)

Trigger setup: production_4p59GeV_fixedTarget_2019

Stream: st_physics(_adc)

• Production: P21id

Library: SL21d

• Run ID: 20179040 – 20183025 (90 runs)

• Events: 2.65×10^8

Run-by-run QA cuts

- Trigger ID
 - 680001 (epde-or-bbce-or-vpde-tof1)
- Event cuts:
 - \circ 198 cm < Vz < 202 cm
 - |Vr| < 2 cm, with center (0, -2) cm

- Track cuts
 - Primary
 - |gDca| < 3 cm
 - nHitsFit > 10
 - nHitsFit/nHitsPoss > 0.52
 - nHitsDedx > 5

- Remove empty bins and $3-\sigma$ outliers
- Empty bins are not taken into account in σ calculation
- Bad run ID [16]: 20180004, 20180005, 20180006, 20180010, 20180019, 20180025, 20181004, 20181016, 20181045, 20182007, 20182015, 20183001, 20183010, 20183013, 20183014, 20183019

Pileup event rejection

- (Red) SumTnMIP < pol3(FxtMult): 2.866082e+02, -2.205095e+00, 1.306652e-02, -2.654024e-05
- (Blue) FxtMult < pol3(SumTnMIP): 2.456353e+02, -6.576115e-02, 1.222239e-02, -8.313992e-05, for FxtMult > 200

PID plots

• TPC dE/dx

• bTOF 1/β

TPC PID check

No bTOF PID

- bTOF 0.73 GeV²/ $c^4 < m^2 < 1.03 \text{ GeV}^2/c^4$
- Gaussian fit & $< n\sigma_{proton} >$ shift in p bins

bTOF PID check

No TPC PID

- TPC $|n\sigma_{\text{proton}}-2.25| < 1$
- No mean shift required

eTOF PID check

No TPC PID

- With TPC PID cut for protons
- eTOF is unavailable

Centrality determination

- FxtMult: primary (branch of StPicoEvent)
- FxtMult3: primary, nHitsFit > 10, nSigmaProton-2.25 < -3 (constant $< n\sigma_{proton} > shift$)
- FxtMult4: primary, nHitsFit > 10, |nSigmaKaon-1.95| > 3

Centrality determination

- 10⁶ Glauber MC events
 - $\sigma_{\rm nn} = 29 \; {\rm mb}$
- Fit @ FxtMult3 > 25

FxtMult3

FxtMult3 >	0	1	2	3	5	7	10	14
Centrality	75-80%	70-75%	65-70%	60-65%	55-60%	50-55%	45-50%	40-45%
FxtMult3 >	18	23	30	37	46	56	68	83
Centrality	35-40%	30-35%	25-30%	20-25%	15-20%	10-15%	5-10%	0-5%

Acceptance

Efficiency

Analysis cuts

- Trigger ID
 - 680001 (epde-or-bbce-or-vpde-tof1)
- Run cuts
 - Bad run rejection
- Event cuts:
 - \circ 198 cm < Vz < 202 cm
 - |Vr| < 2 cm, with center (0, -2) cm
 - Pile-up event rejection

• Events: 2.00×10^8

- Track cuts
 - Primary
 - |gDca| < 3 cm
 - nHitsFit > 10
 - nHitsFit/nHitsPoss > 0.52
 - nHitsDedx > 5
 - $0.4 \text{ GeV/}c < p_T < 2 \text{ GeV/}c$
 - \circ -0.5 < y_{cm} -y < 0, y_{cm} = -1.135
 - $|n\sigma_{\rm p} \langle n\sigma_{\rm p} \rangle(p)| < 2$
 - $0.6 \text{ GeV}^2/c^4 < m^2 < 1.2 \text{ GeV}^2/c^4$
 - p > 2 GeV/c

Analysis techniques

Track-by-track efficiency correction

$$q_{(r,s)} = \sum_{j=1}^{n_{\text{tot}}} \frac{a_j^r}{\varepsilon_j^s}$$

- Analytical statistical uncertainty estimation
 - Based on covariances of terms in track-by-track efficiency correction formulae
- Centrality bin width correction (CBWC)

$$\circ C_k = \sum_r n_r C_{k,r} / \sum_r n_r$$

$$\circ \sigma(C_k) = \sqrt{\sum_r n_r^2 \sigma^2(C_{k,r})/(\sum_r n_r)^2}$$

$$q_{(r,s)} = \sum_{j=1}^{n_{\text{tot}}} \frac{a_j^r}{\varepsilon_j^s} \quad \langle Q \rangle_c = \langle q_{(1,1)} \rangle_c,$$

$$\langle Q^2 \rangle_c = \langle q_{(1,1)}^2 \rangle_c + \langle q_{(2,1)} \rangle_c - \langle q_{(2,2)} \rangle_c,$$

$$\langle Q^3 \rangle_c = \langle q_{(1,1)}^3 \rangle_c + 3 \langle q_{(1,1)} q_{(2,1)} \rangle_c - 3 \langle q_{(1,1)} q_{(2,2)} \rangle_c$$

$$+ \langle q_{(3,1)} \rangle_c - 3 \langle q_{(3,2)} \rangle_c + 2 \langle q_{(3,3)} \rangle_c,$$

$$\langle Q^4 \rangle_c = \langle q_{(1,1)}^4 \rangle_c + 6 \langle q_{(1,1)}^2 q_{(2,1)} \rangle_c - 6 \langle q_{(1,1)}^2 q_{(2,2)} \rangle_c$$

$$+ 4 \langle q_{(1,1)} q_{(3,1)} \rangle_c + 3 \langle q_{(2,1)}^2 \rangle_c + 3 \langle q_{(2,2)}^2 \rangle_c$$

$$- 12 \langle q_{(1,1)} q_{(3,2)} \rangle_c + 8 \langle q_{(1,1)} q_{(3,3)} \rangle_c$$

$$- 6 \langle q_{(2,1)} q_{(2,2)} \rangle_c + \langle q_{(4,1)} \rangle_c - 7 \langle q_{(4,2)} \rangle_c$$

$$+ 12 \langle q_{(4,3)} \rangle_c - 6 \langle q_{(4,4)} \rangle_c,$$

Measured distributions

- Efficiency-uncorrected
- Centrality-dependent means and widths observed

Efficiency-uncorrected cumulants

Efficiency-uncorrected cumulants

Efficiency-uncorrected cumulants

3.2 GeV before corrections3.0 GeV before corrections

Efficiency-corrected cumulants

 Corrected with TPC tracking efficiency (@ 3.0 GeV), TPC PID efficiency and TOF efficiency

Comparison between (un)corrected results

Comparison with 3.0 GeV results

Comparison with 3.0 GeV results

Summary and outlook

- Summary
 - Bad run and pile-up event rejection
 - TPC & bTOF PID checks and $< n\sigma_p >$ shift as a function of p
 - Centrality definition with FxtMult3 (w/ constant $< n\sigma_p >$ shift)
 - TPC PID efficiency and bTOF efficiency
 - Efficiency-uncorrected and -corrected cumulants

- Outlook
 - TPC tracking efficiency from embedding
 - Acceptance dependence of cumulants
 - Other FXT energies (7p3, 31)

Pileup unfolding (iteration)

Pileup study

- Probability to find a pileup event among all collision events: α
- Single-collision event at multiplicity $m: T(m) \rightarrow (1-\alpha)T(m)$
 - Initial distribution from Glauber model
- Pileup event at multiplicity m: $\alpha \sum_{i=0}^{m} T(i)T(m-i)$
- Reversed response matrices R: normalized distribution of i at each m in pileup events
- Correction function in the measured coordinates: difference between the experimentally measured distribution and the folded distribution
- Correction function in the true coordinates: the reversed response matrices *R* multiplying the correction function in the measured coordinates
- \circ T(m) is added by the correction function in the true coordinates for next iteration

Pileup study

- Correlation T(i)T(m-i) between i and m-i in each pileup event
- Reversed response matrices R(m, i)
 - Normalized T(i)T(m-i) at each m

Unfolding results

- 60 iterations
- $\alpha = 0.22\%$ (0.45% @ 3.0 GeV, max FxtMult3 of single events = 80)

