D^0 cross section and R_{AA} in Isobar

Bin centering scale factors

Levy func:

$$\frac{A(n-1)(n-2)}{nT(nT+m_0(n-2))} \times (1 + \frac{m_T - m_0}{nT})^{-n}$$

- 1. The measured yield, initially plotted at the bin centers, is approximated by Levy func;
- 2. To each bin a momentum p_T^* was assigned as calculated from the equation;

$$f(p_T^*) = \frac{1}{\Delta p_T} \int_{\Delta p_T} f(x) dx$$

3. Re-fitted p_T^* as the abscissa. This procedure was re-iterated until the values of p_T^* were stable.

Bin centering scale factors (RuRu)

 10^{-3} 10^{-4} 10^{-5}

Narrow bin width will increase the precision.

Bin centering scale factors (RuRu)

Bin centering scale factors (RuRu)

40-80%

D⁰ spectra in ZrZr & RuRu

0.2-7 GeV/c (RuRu)

0.2-8 GeV/c (ZrZr)

0.2-8 GeV/c (Isobar)

$D^0 R_{AA}$

Motivation:

As afunction of p_T : large p_T D^0 typically originate from hard processes, and then interact with dense and hot medium, lead to energy loss (R_{AA} probe) of the fast moving quark or gluon.

$$R_{AA} = \frac{d^2 N_{AA}^{D^0} / dp_T dy}{\langle T_{AA} \rangle d^2 \sigma^{PP} / dp_T dy} = \frac{\sigma_{inel}^{NN} d^2 N_{AA}^{D^0} / dp_T dy}{\langle N_{coll} \rangle d^2 \sigma^{PP} / dp_T dy}$$

$$< T_{AA} > \times \sigma_{inel}^{NN} = < N_{coll} > 42 \text{ mb}$$

The yield (or number of particles per event) in Zr-Zr and pp collisions;

The number of pp collisions should be equivalent on average to one Zr-Zr collision (experiment & Glauber model)

$$R_{AA} = \frac{Y(ZrZr)}{\langle N_{coll} \rangle Y(pp)}$$

D⁰ spectra in ZrZr & RuRu

D⁰ spectra in ZrZr & RuRu

D^0 spectra in Isobar

D^0 R_{AA} as a function of $< N_{part} >$

D^0 R_{AA} as a function of $< N_{part} >$

D^0 invariant yield and cross section

The invariant yield of D^0 per one minimum bias collision as a function of the transverse momentum: (The Lorentz invariant differential single particle inclusive cross section)

$$E\frac{d^3N}{d\boldsymbol{p}^3} = \frac{d^3N}{p_T dp_T dy d\phi} = \frac{d^2N}{2\pi p_T dp_T dy}$$

 Φ uniform (check for D^0); isotropic production in azimuth \sim Flow.

$$\frac{d^2 N}{2\pi p_T dp_T dy} = \frac{\Delta N^{raw}/\epsilon_{D^0}^{tot}/2}{2\pi p_T \Delta p_T \Delta y \times N_{events} \times B.R.} = \frac{\Delta N_{D^0}^{AA}}{2\pi p_T \Delta p_T \Delta y} = E \frac{d^3 \sigma_{D^0}^{AA}}{d p^3}$$

$$\frac{dN_{D^0}^{AA}}{dy}|_{y=0} = \frac{\Delta N^{raw}/\epsilon_{D^0}^{tot}/2}{\Delta y \times N_{events} \times B.R.} \qquad \frac{d\sigma_{D^0}^{NN}}{dy}|_{y=0} = \frac{dN_{D^0}^{AA}}{dy}|_{y=0} \times \frac{\sigma_{inel}^{pp}}{\langle N_{bin} \rangle}$$

 ΔN^{raw} is the raw yield measured in the bin $\Delta p_T \Delta y$;

 Δp_T is the p_T bin for which the yield is calculated;

 Δy is the rapidity range of the measurements, in this analysis $\Delta y = 2$; (check)

B.R. is the branching ratio of the $K^-\pi^+$ decay channel.

D^0 cross section as a function of N_{part}

Some issues should be considered for $p_T < 0.2 \; {\rm GeV/c.}$

Strict checks

- Primary vtx efficiency;
- Double counting analysis;
- N_{coll} and N_{part} in a wide centrality bin;
- Mean and sigma setting for extracting raw yields;
- Loose cut and sys. Uncertainty.