

PhD Qualification Report

Senjie Zhu(朱森杰)

Supervisor: Yifei Zhang

20th April, 2022

Outline

- Resume
- Scientific research
 - Simulation Setup
 - J/ψ reconstruction
 - Λ_c^+ reconstruction
- Summary and Future research plan

Resume

- Basic information
 - Name: Senjie Zhu
 - Student ID: SA20004063
 - Master Supervisor: Yifei Zhang
 - PhD Supervisor: Yifei Zhang
- Education:
 - 2016-2020: NTU
 - 2020- : USTC

Course

课程名称	成绩	学分	学时
中国特色社会主义理论与实践研究	通过	2	36
自然辩证法概论	通过	1	20
研究生综合英语	通过	2	40
日常交流英语	通过	2	40
高等量子力学	82	4	80
里 子场论	82	4	80
粒子探测技术	78	4	80
原子核物理导论	82	4	80
粒子物理导论	86	4	80
现代数学物理方法	85	4	80
对撞物理	93	4	80
高能物理实验数据分析	75	4	80
核与粒子物理实验方法	83	4	80

学号: SA200040630	姓名: 朱森杰	校验结果: 尚未合格	
您适用的培养计划标准:	<u>物理学硕士</u>	重新进行培养计划校验	
培养计划校验详情:	缺学位论文开题报告:		
培养计划标准备注:			
培养计划要求	已经获得学分	是否合格	
总学分(带必修环节)>=35	总学分=43	合格	
基础课加权平均>=75	基础课加权平均=83	合格	
基础课学分>=16	基础课学分=36	合格	
学科基础课学分>=8	学科基础课学分=16	合格	
公共必修课学分=7	公共必修课学分=7	合格	
基础英语课学分>=2	基础英语课学分=2	合格	
应用英语课学分>=2	应用英语课学分=2	合格	
学位论文开题报告		尚未合格	

GPA: 3.37

Average score of basic course: 83

Total Credit: 43

EicC(Electron ion collision of China) and Nuclear Structure

- How does the spin of proton arise? (Spin puzzle)
- What are the emergent properties of dense gluon system?
- How does proton mass arise?
- How does gluon bind quarks and gluons inside proton?
- Can we map the quark and gluon inside the proton in 3D?
- Proton radius puzzle.
- Hadronization and parton energy loss in nuclear medium.

Detector Geometry

Simulation Setup

 $DCA_{r\phi}$ Resolution

Tracking Efficiency

DCA_z Resolution

Vertex Resolution

Simulation Setup

P(PID|A):Probability to be with PID in situation A

P(PID|A):Probability of situation A if the particle is with PID

$$P(PID|A) = \frac{P(A|PID)}{\sum_{PID_i} P(A|PID_i)}$$

$$PID_i : e, \pi, k, p$$

P(PID|A) is calculated with the chi-squared distribution of n dimensions(n is the number of used detectors)

where $\Sigma_{detector}^{n} \sigma_{detector}^{2}(A|PID)$ is the variable

Backward

 $\sigma_{detector} =$ situation A – expected detector response of specific PID resolution of the detector

J/ψ reconstruction

J/ψ reconstruction and Trace anomaly

Guzey, Zhalov, JHEP 10 (2013) 207; JHEP 02 (2014) 046

- Input from Glauber model
- Statistical error projection of trace anomaly parameter b

$$M_{q} = \frac{3}{4} \left(a - \frac{b}{1 + \gamma_{m}} \right) M_{N},$$

$$M_{g} = \frac{3}{4} (1 - a) M_{N},$$

$$M_{m} = \frac{4 + \gamma_{m}}{4(1 + \gamma_{m})} b M_{N},$$

$$M_{a} = \frac{1}{4} (1 - b) M_{N},$$

$$\frac{d\sigma_{J/\psi} N \rightarrow J/\psi N}{d + \beta_{M}} |_{t=0} \propto (1 - b)$$

$$\frac{d\sigma_{J/\psi N\to J/\psi N}}{dt}|_{t=0} \propto (1-b)^2$$

Eur. Phys. J. C (2020) 80:507

Λ_c^+ reconstruction

 $L_{eD} = 5.4072 fb^{-1}$ per nucleon $L_{ePb} = 2.1727 fb^{-1}$ per nucleon $e(3.5 GeV/c^2)$ and $A(20 GeV/c^2)$ per charge)

- Input from BeAGLE
- The hadronization dynamics will be affected and eventually leads to different hadron spectrum comparing to that in a vacuum.
- Calculation of the statistical error projection of R(Pb/D)

Summary and Future Plans

- Summary
 - The simulation framework of physics@EicC has been set up.
 - J/ψ and Λ_c^+ have been reconstructed.
 - The statistical error projection of trace anomaly parameter b has been calculated.
 - This result has been showed at EicC 1st CDR Workshop.
 - The statistical error projection of $R_{eA}(Pb/D)$ has been calculated.
- Future Plans
 - Models of hadronization will be studied to learn more about the EicC detector sensitivity.
 - STAR data analysis: C_6 of net proton

C_6 of net proton

STAR Au+Au Collisions 0-10% Net-proton Cumulant Ratio C₆/C₂ Data UrQMD √s_{NN} (GeV) -20 F STAR Au+Au Collisions 30-40% $|y| < y_{max}$ |y| < 0.5 $0.4 < p_{_{T}} (GeV/c) < p_{_{T}}^{max}$ $0.4 < p_{-} (GeV/c) < 2.0$ 0.3 0.5 Rapidity cut y Transverse momentum cut p_r^{max} (GeV/c)

Phys. Rev. Lett. 127, 262301

END