

Recent Hypernuclei Measurements from BES Program

Xiujun Li University of Science and Technology of China

RHIC & AGS Users' Meeting 2022

Supported in part by the

Outline

- Introduction
- Review of hypernuclei study in BES-I
- Recent progress of hypernuclei study
 - Hypernuclei internal structure
 - Hypernuclei branching ratios, lifetimes, Λ binding energies
 - Hypernuclei production in heavy-ion collisions
 - Hypernuclei yields, collectivity
- Summary

Introduction - Hypernuclei

Hypernuclei: bound nuclear systems of non-strange and strange baryons

- Probe hyperon-nucleon(Y-N) interaction
 - Strangeness in high density nuclear matter
 - EoS of neutron star
- Experimentally, we can make measurements related to:
 - 1. Internal structure
 - Lifetime, binding energy, branching ratios etc.

Understanding hypernuclei structure may give more constraints on the Y-N interaction

- 2. Production in heavy-ion collisions
 - Spectra, collectivity etc.

The formation of loosely bound states in violent heavy-ion collisions is not well understood

STAR and BES-II

- Collider mode: $\sqrt{s_{NN}} = 7.7 \sim 19.6 \text{ GeV}$
- Fixed Target (FXT) mode: extends collision energy down to $\sqrt{s_{NN}}$ = 7.7 ~ 3.0 GeV

Hypernuclei and STAR BES-II

Hyper nuclei measurements are scarce in heavy-ion collisions experiments

Year	$\sqrt{s_{NN}}$ [GeV]	Events
2018	27	555 M
	<u>3.0</u>	258 M
	<u>7.2</u>	155 M
2019	19.6	478 M
	14.6	324 M
	<u>3.9</u>	53 M
	<u>3.2</u>	201 M
	<u>7.7</u>	51 M
2020	11.5	235 M
	<u>7.7</u>	113 M
	<u>4.5</u>	108 M
	<u>6.2</u>	118 M
	<u>5.2</u>	103 M
	<u>3.9</u>	117 M
	<u>3.5</u>	116 M
	9.2	162 M
	<u>7.2</u>	317 M
2021	7.7	101 M
	<u>3.0</u>	2103 M
	<u>9.2</u>	54 M
	<u>11.5</u>	52 M
	<u>13.7</u>	51 M
	17.3	256 M
	<u>7.2</u>	89 M

- At lower beam energies, the hypernuclei production is expected to be enhanced due to high baryon density
 - STAR BES-II → great opportunity to study hypernuclei production

Hypernuclei analysis in STAR BES-I

STAR collaboration found the anti-hyper triton.

Science 328, 58 (2010) (STAR)

Measurement of mass difference and binding energy of ${}^3_{\Lambda}H$ and ${}^3_{\overline{\Lambda}}\overline{H}$ Nature Phys. 16 (2020) 409 (STAR)

Lifetime measurement of $^3_\Lambda H$ Science 328, 58 (2010) (STAR) PRC 97, 054909 (2018) (STAR)

Hypernuclei reconstruction

• Decay channels:

$$^{3}_{\Lambda}H \rightarrow ^{3}He + \pi^{-}$$
 $^{3}_{\Lambda}H \rightarrow d + p + \pi^{-}$
 $^{4}_{\Lambda}H \rightarrow ^{4}He + \pi^{-}$ $^{4}_{\Lambda}He \rightarrow ^{3}He + p + \pi^{-}$

Combinatorial background estimated via rotating pion tracks or event mixing

$^3_\Lambda H$ branching ratio R_3

Relative branching ratio: $R_3 = \frac{B \cdot R \cdot ({}^3_{\Lambda}H \rightarrow {}^3He\pi^-)}{B \cdot R \cdot ({}^3_{\Lambda}H \rightarrow {}^3He\pi^-) + B \cdot R \cdot ({}^3_{\Lambda}H \rightarrow dp\pi^-)}$

 R_3 may be sensitive to the binding energy of $^3_\Lambda H$

- STAR 2021 (preliminary): $R_3 = 0.272 \pm 0.030 \pm 0.042$
 - Updated world average R_3 is consistent with theory calculation assuming $B_\Lambda \sim$ 0.1 MeV

- $\bullet \ \ \text{Improved precision on } R_3$
 - Stronger constraints on hypernuclear interaction models used to describe $^3_\Lambda H$
 - Stronger constraints on absolute B.R.s

$^3_{\Lambda}$ H, $^4_{\Lambda}$ H and $^4_{\Lambda}$ He lifetimes

$$^{3}_{\Lambda}$$
H: $\tau = 221 \pm 15(\text{stat.}) \pm 19(\text{syst.})[\text{ps}]$
 $^{4}_{\Lambda}$ H: $\tau = 218 \pm 6(\text{stat.}) \pm 13(\text{syst.})[\text{ps}]$
 $^{4}_{\Lambda}$ He: $\tau = 229 \pm 23(\text{stat.}) \pm 20(\text{syst.})[\text{ps}]$

- Lifetime of light hypernuclei ${}^3_\Lambda H$, ${}^4_\Lambda H$ and ${}^4_\Lambda He$ are shorter than that of free Λ (with 1.8 σ , 3.0 σ , 1.1 σ respectively)
- Consistent with former measurements (within 2.5 σ for $^3_{\Lambda}$ H, $^4_{\Lambda}$ H)
- $au_{^3
 m H}$ result consistent with calculation including pion FSI (2019) and calculation under Λd 2-body picture (1992) within 1 σ

 $^3_{\Lambda}$ H, $^4_{\Lambda}$ H results with improved precision

→ Provide tighter constraints on models.

B_{Λ} and ΔB_{Λ} of $^4_{\Lambda}H$ and $^4_{\Lambda}He$

- Λ binding energies and their difference
 - The results for excited states are obtained from the γ-ray transition energies

- Λ binding-energy difference
- →Study CSB effect in A = 4 hypernuclei
- Differences are comparable large values and have opposite sign in 0^+ and 1^+ states
 - Consistent with the calculation including a CSB effect within uncertainties.

Hypernuclei production at 3 GeV

- First measurement of dN/dy of hypernuclei in heavy-ion collisions
- Different trends in the $^4_\Lambda H$ rapidity distribution in central (0-10%) and mid-central (10-50%) collisions
 - Transport model (JAM) with coalescence reproduce trends of $^4_\Lambda H$ rapidity distributions seen in data

Comparison to Λ and light nuclei at 3 GeV

QM2022 talk, Yue-hang onential

Mass number A

- Thermal/ coalescence models predict approx. exponential dependence of yields/ (2J+1) vs A
- ${}^4_{\Lambda} H$ lies a factor of 6 above exponential fit to $(\Lambda, {}^3_{\Lambda} H, {}^4_{\Lambda} H)$

- Non-mononic behavior in light-tohyper-nuclei ratio vs A observed
 - Thermal model calculations including excited $^4_\Lambda H^*$ feed-down shows a similar trend

A. Andronic et al, PLB 697 (2011) 203 (Thermal model)

Energy dependence of hypernuclei production in heavy-ion collisions

- $^3_{\Lambda} H$ yield at mid-rapidity increases from 2.76 TeV to 3 GeV
 - Driven by increase in baryon density at low energies
- Thermal model reproduces the trend, but does not quantitatively describe the yields of ${}^3_\Lambda H$. Meanwhile, ${}^4_\Lambda H$ is underestimated.
- Coalescence(DCM) cannot describe $^3_\Lambda H$, $^4_\Lambda H$ yields using same coalescence parameters, whereas coalescence(JAM) using different parameters approximately can
- PHQMD describes $^4_\Lambda H$ at 3 GeV, but slightly overestimates $^3_\Lambda H$
- Hybrid URQMD overestimates both yields at 3GeV by an order of magnitude

Provide first constrains for hypernuclei production models in the high-baryon-density region

A. Andronic et al, PLB 697 (2011) 203 (Thermal model) S. Gläßel et al, arXiv: 2106,14839 (PHQMD) J. Steinheimer et al, PLB 714 (2021) (H. URQMD, DCM)

S_3 and S_4

- S_A : relative suppression of hypernuclei production compared to light nuclei production $^{A}\text{He} \times \frac{\Lambda}{}$
 - Expect ~1 if no suppression naively
 - $S_3 < 1 \rightarrow$ relative suppression of $^3_{\Lambda}H$ to 3He
 - $S_4 > S_3 \rightarrow \text{enhanced }^4_{\Lambda}H \text{ production due to}$ feed-down from excited state

- No clear centrality dependence
- Hint of an increasing trend from $\sqrt{s_{NN}} = 3.0$ GeV to 2.76 TeV
- None of the models describe the S_3 data quantitatively

STAR, Science 328 (2010) 58 ALICE, PLB 754 (2016) 360 E864, PRC 70 (2004) 024902

- A. Andronic et al, PLB 697 (2011) 203 (Thermal model)
- J. Steinheimer et al, PLB 714 (2021) (H. URQMD, Coal.(DCM)) S. Zhang PLB 684(2010)224 (Coal.+AMPT)

NA49, J.Phys.Conf.Ser.110(2008)032010

$^3_{\Lambda}H$ and $^4_{\Lambda}H$ directed flow at 3 GeV

- First measurements of $^3_\Lambda H$ and $^4_\Lambda H$ directed flow (v_1) from 5 40% centrality
- dv_1/dy slopes of $^3_\Lambda H$ and $^4_\Lambda H$ seem to flow a mass number scaling.
 - → Imply coalescence is a dominant process for hypernuclei formation in heavy-ion collisions

Summary

- STAR BES-II provides a unique opportunity to study hypernuclei, especially at high-baryon-density region
 - ${}_{\Lambda}^{3}H$, ${}_{\Lambda}^{4}H$ lifetimes measured with improved precision
 - Relative branching ratio R_3 of $^3_\Lambda H$ with improved precision
 - ullet Precision lifetime and R_3 provide stronger constraints on hyper nuclear interaction models
 - Λ binding-energy difference between $^4_\Lambda H$ and $^4_\Lambda He$
 - Hint of CSB effect at A=4
 - First measurement of $^3_{\Lambda}H$ and $^4_{\Lambda}H$ collectivity v_1
 - Mass number scaling is observed for the light hypernuclei → qualitatively consistent with coalescence
 - First measurement of $^3_\Lambda H$ and $^4_\Lambda H$ dN/dy vs y in heavy-ion collisions.
 - Provide first constraints to hypernuclei production models @ high $\mu_{
 m B}$
 - Outlook: iTPC and eToF fully installed in 2019 ightarrow improve η acceptance and PID at large η
 - Expect precision measurements and more information of hypernuclei production with wider η range

Back up

³H 3-body signal

• SE-ME signals contains real signal and kinematically correlated $\Lambda + d(\Lambda \to p\pi^-)$

- Normalized χ^2_{NDF} distribution of Λ + d and $^3_{\Lambda}$ H template from MC ($f_{\Lambda d}$ and $f_{^3_{\Lambda}}$ H), and reconstructed signal f_{Data}
- Purity: the fraction of real $^3_\Lambda {
 m H}$ signals $f_{^3_\Lambda {
 m H}}$ in signals f_{Data} from fitting $f_{Data} = p_0 \cdot (f_{\Lambda d} + p_1 \cdot f_{^3_\Lambda {
 m H}})$

Lifetime

- Lifetime τ extracted via $N(t) = N_0 e^{-L/\beta \gamma c \tau}$
- Λ lifetime cross check : 267±4 ps, consistent with PDG value (263±2 ps)
- $^3_\Lambda H$ and $^4_\Lambda H$ lifetimes from 3.0 GeV consistent with 7.2 GeV results

Observation of $\frac{4}{\Lambda}\overline{H}$

Datasets from STAR at RHIC facility

Year	$\sqrt{s_{NN}}$ GeV	System	Events
2010	200	Au+Au	0.67B
2011	200	Au+Au	0.68B
2012	193	U+U	0.67B
2018	200	Ru+Ru, Zr+Zr	4.61B

Antimatter/matter yield ratios are consistent with previous results and models.

- First observation of heaviest anti-hyper nucleus in experiment
- New opportunity for the study of matter-antimatter asymmetry

Detector upgrade

In year 2019:

QM2019 talk, Yi Yang

- 1. iTPC fully operational
- 2. eTof fully installed

They both improve η acceptance and PID at large η .

High statistics in BES-II + wider η coverage than in year 2018

ightarrow Expect precision measurements and more information at large η