Updates of the ECal: simulation and hardware

Ye Tian

Institute of Modern Physics, CAS On behalf of EicC ECal group

> EicC 3rd CDR Meeting 2022-10-22

Outline

EicC ECal detector introduction

- Module simulation work
 - Design of ECal module
 - Module performance
- Whole ECal detector simulation

ECal simulation software and reconstruction framework

Shashlik prototype hardware work

Design of the ECal for EicC

From EicC white paper

Basical ECal special requirement:

- E-endcap: good low energy resolution
- Barrel: short radius, good angle resolution
- Ion-endcap: angle resolution, π⁰ reconstruction, PID. Need additional small angle detector.

Barrel

Pseudorapidity	Angle(degree)					
3	5.7					
1 5	25.2					
1.5						
-1	139.6					
-	20010					
-3	174.3					
	Pseudorapidity 3 1.5 -1 -3					

Whole Design in simulation

- General design of whole Ecal Detector.
- CsI is applied in e-endcap, Shashlik style is applied in both barrel and ion-endcap
- Two ion-endcap ECals combine to one in this simulation.
- The actual distances of the two endcaps to IP depend on the available space of the EicC design

	EMC	type	z/r[m]	Length[cm],X ₀	Coverage[cm]	pseudorapidity	Tower size
	e-endcap	Csl	Z=-1.5	30, 16X ₀	15.0 <r<127.6< th=""><th>(-3.0, -1.0)</th><th>4.0*4.0(front)</th></r<127.6<>	(-3.0, -1.0)	4.0*4.0(front)
EicC	barrel	Shashlik	R=0.9	50, 16X ₀	-105.8 <z<187.5< th=""><th>(-1.0, 1.5)</th><th>4.0*4.0</th></z<187.5<>	(-1.0, 1.5)	4.0*4.0
	Ion-endcap	Shashlik	Z=2.4	50, 16X ₀	24.0 <r<115.2< th=""><th>(1.5, 3.0)</th><th>(front)</th></r<115.2<>	(1.5, 3.0)	(front)

EicC ECal module optimization and simulation

NIKA-MPD shashlik Ecal

Csl Crystal

Shashlik ECal design

- Longitudinal:
 - (1.5 mm scintillator + 0.35 mm lead+ 65 μ m reflector *2) * 240 layers
 - Radiation length: total 16 X_0 (X₀: 2.81cm, Reflector not include)
 - Length: 15mm external fiber, 6mm Al Plate + 470mm + 8mm
 Al Plate + 45mm fiber bundle + 15mm SiPM readout = 560mm
- Lateral:
 - 4.0×4.0 cm²
 - 16×Φ1.2mm WLS fbers to collect light
 - 4× Φ 1.5mm steel rods as module support
- Other supplyment
 - ESR as fiber end reflector
 - 6.0×6.0 mm² S13360-6025 SiPM as readout
 - TiO2 coating

Shashlik array simulation result

Energy resolution

$$E = (\sum E_i) \cdot w_{sampling_ratio}$$

$$E = \left(\sum NPhotons_{i}\right) \cdot w_{photon_to_energy}$$

W0 parameter optimization for position reconstruction

The hit position is reconstructed by $x = \frac{\sum (x_i \cdot W_i)}{\sum W_i}$ Where $W_i = W_0 + \log \left(\frac{E_i}{\sum E}\right)$, W_0 is a constant that related to the energy.

W₀=3.5 equivalent to E_i/E>3%

Position resolution v.s. W0 for different e- energy

Position resolution with NN method (0.5-5 GeV)

Train input: N.P.E. of 49 modules, energy range: 0.5-5 GeV **Output** : reconstructed position

Use NN trained model to test single energy data: [mm]

- 0.6 GeV: 5.77
- 1 GeV: 4.6
- 2 GeV: 3.1
- 4 GeV: 2.52

Compared with the W0 method: [mm]

- 0.6 GeV: 6.2
- 1 GeV: 5.3
- 2 GeV: 3.65
- 4 GeV: 2.7

- NN method for position reconstruction is much better than W₀ method.
- May exist other better "theoretical calculation" method!
- NN method is also applied for energy reconstruction and PID, but not work well as ordinary method

PID: e/π separation of ECal (Shashllik)

Ratio from pythia

Artificial cut selection and PID result (1-2 GeV/c)

Two cut: **E/P ratio** and **R(r)**:

$$R(x) = \sum (x_i - x_{re})^2 \frac{w_i}{w_{all}}$$

$$\mathsf{R}(r) = \sqrt{R(x)^2 + R(y)^2}$$

Percentage (%) <mark>(200k events)</mark>		Real PID		
		е	π	
	е	99.25	0.70	
PID result	π	0.75	99.30	

- Good result for PID: e efficiency > 99%, π rejection ~ 100:1
- If considering the real e/π ratio, cut selection and PID result will be much different
- Shower method and MIP/time method result for e/π is independent

Csl module array simulation result

- Very good energy resolution: <u>1.5%@1GeV</u>
- Better position resolution(0.48cm@1GeV) than shashlik(0.53cm@1GeV)

Whole ECal simulation

Shashlik barrel and ion-endcap configuration for the EMC

240 layers * (1.5 mm scintillator + 0.35 mm Lead) (16 X₀)

Single Module

Module θ optimization for barrel

24 + 24 + 10 with 2.1° + 2.1° + 1.3°

to minimize the dz and the energy leakage between barrel and endcap.

Two angles

Electron Forward Endcap Configuration for the ECal

Single e⁻ reconstruction

- Reconstruction based on 3-independent parameters:
 - Energy
 - Two angles (θ and φ).
- $\Delta = \text{Reco} \text{Real}$
- Need extra calibration for bais

1GeV e- energy ΔE & resolution v.s. Pseudorapidity

Reconstructed angle $\Delta \theta$ vs. Pseudorapidity η

Reconstructed angle $\Delta \varphi$ vs. Pseudorapidity η

Ecal simulation in EiccRoot

- Refer to PandaRoot and MpdRoot(NIKA) EMC software structure.
- Perform both **simulation and reconstruction** with one script("run_sim.c").
- Input:
 - Generator setting and other detectors
 - Geometry root file: E-endcap, barrel and ion-endcap, or 7*7 array.
 - Parameters for reconstruction
- Main task: ECal simulation, module digitization, cluster reconstruction, particle reconstruction
- Output:
 - Tree contains the result of each task
 - Final result: 4-V of reconstructed particles and PID

CPU/MEM/Disk performance: (linear to energy)

- Time consuming: 0.06s/(1GeV*1event)
- Low memory consuming
- Disk usage:
 - Normal: 52k byte/ 1 GeV(e-)
 - Minimum: 8.5k byte / 1 GeV(e-)

Full output tree

Complement the simulation work

- 1. Parametrization from energy to N-Photons detected in SiPM.
- 2. N-Photons + time -> Waveform
- 3. Extract energy and time from waveform.

ECal reconstruction flow diagram

Shashlik 3D efficiency

Z(N layer) direction efficiency

- 3D photon collection efficiency(x, y, NLayer): 1. evaluate the uniformity of module; 2. light yield simulation with 3D parametrization.
- 3D photon collection efficiency extraction method:

$$ffi = \frac{Nphotons\ hit\ on\ SiPM}{Nphotons\ generated\ initially}$$

• Each bin is 0.5mm for X and Y direction, for geometry symmetry, ¹/₄ of area is considered in final result

е

Shashlik ECal hardware work

NPE simulation comparison between beam test(e) and comsic ray(muon)

	Energy deposit (MeV) in Scintillator (Landau fit)	N.P.E simulation	N.P.E /MeV	Normalized to 1GeV e- 4000N.P.E/360MeV (11.1/MeV) (NIKA beam test)
1GeV e-	224 (gaus fitting)	3297(gaus)	14.7	2486(=224MeV *11.1/MeV) (Single module)
3GeV mu- (vertical)	73.9	1014	13.7	820
3GeV mu- (horizontal)	5.62	90.3	16.0	63*1.09(16/14.7)=68.7

PMT test

• To evaluate the NPE value of prototype module, ordinary PMT is used, and read out by a FADC, which could acquire both waveform and work as precise QDC.

SiPM test

• The SPE of SiPM could not be calibrated now in our Lab.

PMT in test (ET 9814B)

Horizontal cosmic ray test setup

Add fiber end mirror

ESR coating(temporary)

Trigger scintillator that places at the center of module has the same size as module laterral size.

Fiber bundle – SiPM coupling

Horizontal cosmic ray test result

Fitted by covolution of landau and gaus:

EXT	PARAMETER			
NO.	NAME	VALUE	ERROR	
1	Width	8.21287e+01	6.02676e+00	lċ
2	MP	1.57781e+03	1.00396e+01	a
3	Area	8.71232e+04	1.94861e+03	B
4	GSigma	2.07478e+02	1.07888e+01	

landau : width, MP gaus : GSigma

Testestus			Simualtion result		
lest setup	ADC count	Relative improvement	N.P.E	Relative improvement	
original	586		59		
Add fiber end mirror	905	0.54	68	0.15	
Fiber end mirror + coating	1578	0.74	90.3	0.33	

- For SPE spectrum, 94 LSB with 10 fC/LSB
- For cosmic ray test, 344 LSB with 160 fC/LSB
- Finally, **58.6** NPEs is acquired.

1750V SPE spectrum

Next shashlik prototype test plan

- Perform both precise horizontal and verticle module cosmic ray test by PMT, and evaluate the NPE value.
- Update the test electronics plug-in for SiPM.
- Use low range type SiPM for cosmic ray test. •
- Test the performance of all materials. •
- Optimize the scintillator performance by improving • the component.

Conclusion and outlook

Module and detector optimization is perfromed

- ✓ Improved performance for energy, position and PID
- ✓ ECal simulation and reconstruction software frame is built, work well for the Ecal detector
- ✓ **Test setup and prototype** is built and starting cosmic ray test

Work in hand:

- ➤Go on waveform simulation and reconstruction for more precise simulation
- More work on prototype assembly, test and Lab setup
- Time reconstruction and performance

Future work

- Cooperate with other detectors
- > Physics requirement
- ➢ Re-consider the module design after the whole software frame is finished
- ► More other work......ANN......

TUNIZ $\gamma(0)$

Geant4 optical photon simulation

Takes into account the effects of light

generation and propagation inside the

scintillator tiles and in the WLS fibers.

OpticalPhysics physics list

- Generation processes through scintillation for both the slow and fast components;
- Exponential light attenuation processes;
- Wave-length-shifting processes;
- Reflection and refraction processes between materials with different refractive index.
- Time consuming

Important to extract parameters for the simplified simulations

Cluster algorithm for photon reconstruction

- Photon energy deposited in few blocks of ECal
- Build cluster with cellular automaton algorithm:

Step 1: Select block above energy threshold

0	0.01	0.02	0.01	0	0	0
0	0.05	0.05	0.1	0.4	0.1	0
0.02	0.2	0.5	0.3	1.9	0.1	0.0
0	0.3	3.0	0.3	0.3	0	0
0	0.2	0.2	0.1	0.03	0	0

0.02 0.01 0.01 0 0 0.05 0.1 0.4 0.1 0.05 0.5 0.3 1.9 0.2 0.1 0.3 3.0 0.3 0.3 0 0.2 0.1 0.03 0 0.2

Step 2: Maximum peak contaminates the blocks around it

			0.01		
	0.05	0.05	0.1	0.4	0.1
0.02	0/2	0.5	03	1.9	01
	0.3	3.0	0.3	0.3	
	0.2	0.2	01	0.03	
		\sim	0.01		
	0.05	0.05	1.9	1.9	1.9
0.02	3.0	3.0	3.0	1.9	1.9
	3.0	3.0	3.0	1.9	
	3.0	3.0	3.0	0.03	
			1.9		
	3.0	3.0	1.9	1.9	1.9
3.0	3.0	3.0	3.0	1.9	1.9
	3.0	3.0	3.0	1.9	
	3.0	3.0	3.0	3.0	

Problem: can't split these blocks to the adjacent two clusters, **need ANN.**

Two clusters are reconstructed

Then, the energy, time and position information of photon cluster could be reconstructed through these pulses.

Photon collection efficiency in each step

Considering both E/P and R cut for 0.5-1 GeV/c e/ π

$$P_{\perp min} = r * H * \frac{\frac{e}{c}}{P \to m} = 0.45 * 1.5 * \frac{\frac{1.6}{3}}{1.78} = 0.202 \frac{\text{GeV}}{\text{c}}$$

If a particle has P_{\perp} less than 0.202 GeV/c, it will never hit barrel, but could hit the endcap.

Percentage (%) <mark>(210k events)</mark>		Real	PID
		е	π
	e		3.5
PID result	π	2.6	96.5

Low momentum PID get worse, but not too worse.

π^0 in EicC

> Two photons > π^0 reconstruction > π^0 Detection efficiency:

 π^0 momentum and η distribution from Pythia generator

Angle of two photon in Lab system

Add megnetic field

If a particle has P_{\perp} less than 0.202 GeV/c, it will never hit barrel, but could hit the endcap.

- 加入磁场后, 粒子飞行时间增加, XY平面会增加一定角度入射, z-theta平面, 粒子击中时的|z|距离增加。
- 量能器可以得到的击中信息(E, x, y, z)
- 除了能量E, 其它三个参数均无法直接推算粒子的信息。
- 电子, 能量1GeV
- 磁场1.5T
- 只考虑桶部击中

Comparison w/ and w/o magnetic field (barrel)

Beam test results

