D^* signal in Isobar collisions

D^{*+}/D^{*-} reconstruction

- \odot Excited charged D meson; $c\bar{d}$; 2010.26 \pm 0.06 MeV;

Yuanjing Ji

D^{*+}/D^{*-} reconstruction

Background reconstruction

Wrong sign method

$$K^{\pm}\pi^{\pm}\pi^{\pm}\pi_{S}^{\pm}\longrightarrow K^{\pm}\pi^{\mp}\pi_{S}^{\pm}$$

Side band method

Mixed-event method

Wrong sign method

Sideband method

Norm=0.102 (set by hand)

0-80%

0-20%

20-40%

40-80%

- Backgrounds are larger for central (or average) collisions, peripheral collisions have better significance;
- Tune normalization scale factors to study a possible scheme for two points signals;
- 8~10 GeV/c signals.

Semester plan

- Waiting N_{bin} systematic uncertainty (9.9-10.1)
- \bigcirc D^* spectra analysis (10.1-12.1)
- \circ v_2 refit (12.1-1.1)