

Non-prompt J/ ψ analysis in proton-proton collisions at $\sqrt{s}=5.02$ TeV

2022.9.30

张原

Motivation

There are three different processes that contribute to the inclusive J/ψ yield measured at the LHC:

- Direct production: a $c\bar{c}$ pair produced in the hard partonic scattering process combines to form a J/ψ state
- Decay from higher excited charmonium states: a produced $c\bar{c}$ pair hadronizes in a higher mass state than J/ψ , for example χ_c or $\psi(2S)$ state and then decays into a J/ψ state
- Decay from beauty-flavored hadrons: a $b\bar{b}$ pair from the initial hard scattering processes, hadronizes and produces a beauty flavored hadron, h_B , which decays weakly to a J/ψ state

- \succ In order to gain an accurate knowledge of the prompt charmonium production mechanisms, the adequate measurement and subtraction of the non-prompt J/ ψ component from the inclusive one is mandatory
- \blacktriangleright the study of beauty hadrons decaying into J/ ψ allows to accurately measure the beauty hadron cross-section down to very low transverse momentum

prompt

Datasets

- Data: LHC17p、LHC17q
 - NINT7 is 631.8M
- MC: LHC18a11

- Event cuts:
 - $|V_z|$ < 10 cm
 - Physics selection
 - MinVtxContributors > 1
 - Minimum bias trigger

Analysis cuts:

Task	Action
p_T	> 1 GeV/c
$ \eta $	< 0.9
$ DCA_{xy} $	< 0.5 cm
$ DCA_z $	< 2.0 cm
kITSrefit	request
TPCrefit	request
kink daughters	reject
matching with SPD	SPDany
ITS χ^2 per cluster	< 36
number of ITS shared clusters	At most 1
number of TPC clusters	>70
TPC χ^2 per cluster	< 4
Pre-filter cuts:	
p_T of conversion partner	< 300 MeV/c
invMassPair	$< 50 \text{ MeV}/c^2$
electron inclusion	-2,3 σ
p and π rejection	-3,3 σ

Fit Function

- Mass: Crystal ball function
- Pseudoproper decay length:
 - Prompt:

$$R(x) = \omega_1 \cdot G_1(x; \mu_1, \rho_1) + \omega_2 \cdot G_2(x; \mu_2, \rho_2) + \omega_3 \cdot f(x; \alpha, \lambda)$$

$$G(x; \mu, \rho) = \frac{1}{\sqrt{2\pi\rho^2}} e^{-\frac{(x-\mu)^2}{2\rho^2}}$$

$$f(x; \alpha; \lambda) = \begin{cases} \frac{\lambda - 1}{2\alpha\lambda} & |x| < \alpha \\ \frac{\lambda - 1}{2\alpha\lambda} \alpha |x|^{-\lambda} & |x| > \alpha \end{cases}$$

Non-prompt:

$$F_{B[p_T,type]}(x) = \chi_B(x) \otimes R_{p_T,type}(x)$$

Background :

$$F_{Bkg[m_{inv,p_{T},type}]}(x) = \left[\frac{f_{+}}{\lambda_{+}}e^{-\frac{x'}{\lambda_{+}}} \cdot \theta(x') + \frac{f_{-}}{\lambda_{-}}e^{\frac{x'}{\lambda_{-}}} \cdot \theta(-x') + \frac{f_{Sym}}{2\lambda_{Sym}}e^{-\frac{|x'|}{\lambda_{Sym}}} + (1 - f_{+} - f_{-} - f_{Sym}) \cdot \delta(x')\right] \otimes R_{p_{T},type}(x - x')$$

Components of the Likelihood function

Components of the Likelihood function

Fit results

Compare

 0.139 ± 0.032

Problem

