Study of HWRD process $\Xi^0 \rightarrow \Sigma^0 \gamma$

Jiajun Tang

University of Science and Technology of China

Oct 21, 2022

イロト スピト イヨト イヨト

October 20, 2022

1/9

Hara theorem

In hyperon weak radiative decay(HWRD): B^{PV} should vanish under SU(3) limit $\rightarrow \alpha_{\gamma}=0$ Take the weak breaking of SU(3) symmetry into consideration $\alpha_{\gamma}\sim\pm0.2$

$$\alpha_{\gamma} = \frac{2\text{Re}(A^{PC} * B^{PV})}{|A^{PC}|^2 + |B^{PV}|^2}$$

- α_{γ} : decay asymmetry
- A^{PC} : parity conserving amplitude
- B^{PV} : parity violating amplitude

(a) < (a) < (b) < (b)

Motivation

Measurements of decay asymmetry for $\Xi^0 o \Sigma \gamma$			
Experiments	${\sf BR}/10^{-3}$	lpha	Events
1989 SPEC	$3.56 \pm 0.42 \pm 0.10$	$+0.20 \pm 0.32 \pm 0.05$	85
2000 NA48	$3.16 \pm 0.76 \pm 0.32$	-	17
2001 KTEV	$3.34 \pm 0.05 \pm 0.09$	$-0.63 \pm 0.08 \pm 0.05$	4045
2010 NA48	_	$-0.729 \pm 0.030 \pm 0.076$	15k

Analysis Strategy

$$J/\psi\to \Xi^0\bar{\Xi^0},\ \bar{\Xi^0}\to\bar{\Sigma}^0\gamma,\ \Xi^0\to\Lambda\pi^0,\bar{\Sigma}^0\to\bar{\Lambda}\gamma$$

• Reconstruction: missing π^0

- Charged Tracks
 - $N \ge 4$
 - after pid: $N_p, N_{\pi^-}, N_{\bar{p}}, N_{\pi^+} \geq 1$

- Neutral Tracks: $N_{\gamma} \geq 2$
- A& $\bar{\Lambda}$: Loop $p\pi^-(\bar{p}\pi^+)$ pairs to find the best

イロト 不得下 不足下 不足り

- Kinematics Fit
 - Constrain $m_{\pi^0} \& m_{\bar{\Xi}}$
 - $\bullet~{\rm Loop}~\gamma\gamma$ pairs to optimize

BDT – BKG Components

- Apply truth match to 2 photons Get a set of match angles: $(\theta_{\gamma_1 \text{with}\pi^0}, \ \theta_{\gamma_1 \text{with missing}\pi^0}, \ \theta_{\gamma_2 \text{with}\pi^0}, \ \theta_{\gamma_2 \text{with missing}\pi^0})$ Classify BKG as
 - 1 Both come from signal π^0
 - Only $\gamma 1$ is from signal
 - 2 $\gamma 2$ comes from missing π^0
 - 3 $\gamma 2$ is noise
 - Only $\gamma 2$ is from signal
 - 4 $\gamma 1$ comes from missing π^0
 - 5 $\gamma 1$ is noise
 - Both aren't from signal
 - 6 Both come from missing π^0
 - 7 $\gamma 1$ from missing $\pi^0_- \& \gamma 2$ is noise
 - 8 $\gamma 2$ from missing π^0 & $\gamma 1$ is noise
 - 9 Both are noise

Bottom-up corresponds to case 1-9 Yellow Part: containing noisy photons

< 日 > < 同 > < 回 > < 回

BDT – Input

- $\bullet\,$ Bkg sample: each match angle is larger than $15^\circ\,$
- Signal sample: one of the angles is less than 10°

$$var1 = \frac{e3 \times 3 - eSeed}{e3 \times 3}$$
$$var2 = \frac{E - eSeed}{(Hits - 1) \times eSeed}$$

BDT – Results

BDT – Results

Cut efficiencies and optimal cut value Efficiency (Purity) Significance 0.8 15 0.6 10 0.4 0.2 For 1000 signal and 1000 background events the maximum S/\S+B is 23 17 when cutting at 0.09 0 0.2 0.4 -0.4 -0.2 0 Cut value applied on BDT output

イロト イヨト イヨト

BDT – Results

Correlation Matrix (background)

▲□▶▲圖▶▲≣▶▲≣▶ = 差 - 釣ぬの