UrQMD (Fortran) calls ROOT (C++) Fan Si #### **Status** - Generally successful (but with some cases to be determined / developed) - Define C++ functions, and let them called by Fortran at proper locations - Define C++ extern struct to link Fortran quantities (commons) - Location: ui:/ustcfs/HICUser/fsi/urqmd - Original UrQMD: /ustcfs/HICUser/fsi/urqmd/urqmd - Change: pythia6409.f -> pytahi6428.f (final pythia6), GNUmakefile updated - Change: new gfortran option -std=legacy in mk/Linux.mk - New Fortran & C++ codes: /ustcfs/HICUser/fsi/urqmd/curqmd - c_*.f, curqmd.[cxx,h], GNUmakefile, run.sh ## What to store (UrqmdDst) | colu | mn# | contents | |------|-----------|--| | 0 | | "E" (only in O016) | | 1 | | # of collisions | | 2 | | # of elastic collisions | | 3 | J | # of inelastic collisions | | 4 | ٦/ | # of Pauli-blocked collisions | | 5 | V | # of decays | | 6 | ٧, | # of produced hard baryon resonances | | 7 | 1 | # of produced soft baryon resonances | | 8 | $\sqrt{}$ | # of baryon resonances produced via a decay of another resonance | - Entry for each time step of events (few) - Additional branch - b - time: event level (instead of track level) - Npart: Aproject + Atarget #(pptype%100==0) - Ntracks - spin - iso3_old1 & iso3_old2 | ind: index of particle (see CTOption (5)) 1 | _O O13 | _O O14 | _O O15 | O ^O 16 | contents | |--|------------------|------------------|------------------|-------------------|---| | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | 1 | | ind: index of particle (see CTOption (56)) | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 1 | 1 | 2 | 1 | t: time of particle | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 2 | 2 | 3 | 2 🗸 | r_x : x coordinate | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 3 | 3 | 4 | | r_y : y coordinate | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 4 | 4 | 5 | 4 🗸 | r_z : z coordinate | | 7 7 8 7 9 p_y : y momentum component p_z : z y momentum component p_z : z c | 5 | 5 | 6 | | E: energy of particle | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 6 | 6 | 7 | 6 √ | p_x : x momentum component | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 7 | 7 | 8 | 7 🗸 | p_y : y momentum component | | 9 9 10 10 11 10 \sqrt{m} : mass of particle ityp: particle-ID ityp: particle-ID iso3: $2 \cdot I_3$ (see Section 12) 12 12 13 12 \sqrt{ch} : charge of particle parent collision number (see Table 10) 14 14 15 14 $\sqrt{N_{coll}}$ number of collisions $S:$ strangeness 15 15 15 17 17 $\sqrt{fr}:$ freeze-out time of particle $\sqrt{r_x^{fr}:}$ freeze-out x coordinate $\sqrt{r_x^{fr}:}$ freeze-out x coordinate $\sqrt{r_x^{fr}:}$ freeze-out x coordinate x momentum x component condition freeze-out x freeze-out momentum x freeze-out fre | 8 | 8 | 9 | 8 🗸 | p_z : z momentum component | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 9 | 9 | 10 | 9 🗸 | m: mass of particle | | 12121312 \sqrt{ch}: charge of particle13131413 \sqrt{parent collision number (see Table 10)}14141514 \sqrt{N_{coll}} number of collisions1516 $S:$ strangeness1515parent process type (see Table 11)16 $t^{fr}:$ freeze-out time of particle17 $t^{fr}:$ freeze-out time of particle18 $t^{fr}:$ freeze-out x coordinate19 $t^{fr}:$ freeze-out y coordinate20 $t^{fr}:$ freeze-out energy of particle21 $t^{fr}:$ freeze-out momentum x component22 $t^{fr}:$ freeze-out momentum y component23 $t^{fr}:$ freeze-out momentum y component24 $t^{fr}:$ freeze-out momentum y component25 $t^{fr}:$ freeze-out momentum y component26 $t^{fr}:$ freeze-out momentum y component27 $t^{fr}:$ freeze-out momentum y component28 $t^{fr}:$ freeze-out momentum y component29 $t^{fr}:$ freeze-out momentum y component20 $t^{fr}:$ freeze-out momentum y component21 $t^{fr}:$ freeze-out momentum y component22 $t^{fr}:$ freeze-out momentum y component23 $t^{fr}:$ freeze-out momentum y component24 $t^{fr}:$ freeze-out momentum y component25 $t^{fr}:$ freeze-out momentum y component26 $t^{fr}:$ freeze-out momentum y component27 $t^{fr}:$ freeze-out momentum y component28 $t^{fr}:$ freeze-out momentum y component29 $t^{fr}:$ freeze-out momentum y | 10 | 10 | 11 | 10 | ityp: particle-ID | | 13 | 11 | 11 | 12 | 11 🗸 | iso3: $2 \cdot I_3$ (see Section 1.2) | | 141415 $14\sqrt{N_{coll}}$ number of collisions
S : strangeness1515 $15\sqrt{parent}$ parent process type (see Table III)
history information (debugging only)16 $\sqrt{t^{fr}}$: freeze-out time of particle
$\sqrt{r_x^{fr}}$: freeze-out x coordinate
$\sqrt{r_x^{fr}}$: freeze-out y coordinate
$\sqrt{r_x^{fr}}$: freeze-out z coordinate
$\sqrt{r_x^{fr}}$: freeze-out energy of particle
$\sqrt{r_x^{fr}}$: freeze-out momentum x component
$\sqrt{r_x^{fr}}$: freeze-out momentum y component
$\sqrt{r_x^{fr}}$: freeze-out momentum y component
$\sqrt{r_x^{fr}}$: freeze-out momentum z compo | 12 | 12 | 13 | 12 🗸 | ch: charge of particle | | 141415 $14\sqrt{N_{coll}}$ number of collisions
S : strangeness1515 $15\sqrt{parent}$ parent process type (see Table III)
history information (debugging only)16 $\sqrt{t^{fr}}$: freeze-out time of particle
$\sqrt{r_x^{fr}}$: freeze-out x coordinate
$\sqrt{r_x^{fr}}$: freeze-out y coordinate
$\sqrt{r_x^{fr}}$: freeze-out z coordinate
$\sqrt{r_x^{fr}}$: freeze-out energy of particle
$\sqrt{r_x^{fr}}$: freeze-out momentum x component
$\sqrt{r_x^{fr}}$: freeze-out momentum y component
$\sqrt{r_x^{fr}}$: freeze-out momentum y component
$\sqrt{r_x^{fr}}$: freeze-out momentum z compo | 13 | 13 | 14 | 13 🗸 | parent collision number (see Table 10) | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 14 | 14 | 15 | | N_{coll} number of collisions | | history information (debugging only) t^{fr} : freeze-out time of particle t^{fr} : freeze-out x coordinate t^{fr} : freeze-out y coordinate t^{fr} : freeze-out y coordinate t^{fr} : freeze-out z coordinate t^{fr} : freeze-out energy of particle t^{fr} : freeze-out energy of particle t^{fr} : freeze-out momentum x component t^{fr} : freeze-out momentum y momen | | | 16 | , | S: strangeness | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 15 | 15 | | 15 🗸 | parent process type (see Table [1]) | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | 17 | | history information (debugging only) | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 16 | | | √ | t^{fr} : freeze-out time of particle | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 17 | | | $\sqrt{}$ | r_x^{fr} : freeze-out x coordinate | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 18 | | | $\sqrt{}$ | r_y^{fr} : freeze-out y coordinate | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 19 | | | 1 1 | r_z^{fr} : freeze-out z coordinate | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 20 | | | , | E^{fr} : freeze-out energy of particle | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 21 | | | | p_x^{fr} : freeze-out momentum x component | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 22 | | | i ', i | p_y^{fr} : freeze-out momentum y component | | 17^* τ_{form} formation time of particle R_{σ} cross section reduction factor unique particle number (not ID!) | 23 | | | | p_z^{fr} : freeze-out momentum z component | | 17* $\sqrt{\tau_{form}}$ formation time of particle R_{σ} cross section reduction factor unique particle number (not ID!) | | 16* | | V | $ au_{dec}$ decay time of particle | | 18* R_{σ} cross section reduction factor unique particle number (not ID!) | | 17* | | | $ au_{form}$ formation time of particle | | 19* | | 18* | | l ', l | R_{σ} cross section reduction factor | | 16* / itumold , porticle ID of parent porticle # 1 | | 19* | | 1 1 | unique particle number (not ID!) | | 16 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | | | 16* | ityp ₁ ^{old} : particle-ID of parent particle # 1 | | | | | | 17* | ityp2 : particle-ID of parent particle # 2 | ## What to store (UrqmdCollisionDst) | colui | mn# | format | contents | |-------|----------|---------|---| | 1 | | (i8) | number of ingoing particles $N_{\rm in}$ | | 2 | J | (i8) | number of outgoing particles $N_{ m out}$ | | 3 | J | (i4) | process ID (see Table 11) | | 4 | 1 | (i7) | collision/entry counter | | 5 | V | (f8.3) | collision time $t_{\rm coll}$ in fm/ c | | 6 | V | (e12.4) | center of mass energy of the collision \sqrt{s} in GeV | | 7 | √, | (e12.4) | total cross-section of the collision σ_{tot} in mbarn | | 8 | | (e12.4) | partial cross-section of the actual sub-process σ_i in mbarn | | 9 | | (e12.4) | Baryon density at collision point $\rho_{\rm B}$ in units of $\rho_{\rm 0}$ | - Not created or stored if storeCollision = false - Entry for each collision of events (many) - Additional branch - b - Ntracks - spin - iso3_old1 & iso3_old2 | | _O O13 | o ^{O14} | _O O15 | o ^{O16} | contents | |---|------------------|------------------|------------------|------------------|---| | Γ | | | 1 | | ind: index of particle (see CTOption (56)) | | 1 | 1 | 1 | 2 | 1 | t: time of particle | | 1 | 2 | 2 | 3 | 2 🗸 | r_x : x coordinate | | 1 | 3 | 3 | 4 | 3 🗸 | r_y : y coordinate | | 1 | 4 | 4 | 5 | 4 🗸 | r_z : z coordinate | | 1 | 5 | 5 | 6 | 5 | E: energy of particle | | 1 | 6 | 6 | 7 | 6 √ | p_x : x momentum component | | 1 | 7 | 7 | 8 | 7 🗸 | p_y : y momentum component | | 1 | 8 | 8 | 9 | 8 🗸 | p_z : z momentum component | | 1 | 9 | 9 | 10 | 9 🗸 | m: mass of particle | | 1 | 10 | 10 | 11 | 10 🗸 | ityp: particle-ID | | 1 | 11 | 11 | 12 | 11 🗸 | | | 1 | 12 | 12 | 13 | 12 🗸 | ch: charge of particle | | 1 | 13 | 13 | 14 | 13 | parent collision number (see Table 10) | | 1 | 14 | 14 | 15 | 14 🗸 | N_{coll} number of collisions | | 1 | | | 16 | ` | S: strangeness | | 1 | 15 | 15 | | 15 🗸 | parent process type (see Table [1]) | | 1 | | | 17 | | history information (debugging only) | | Γ | 16 | | | | $t^{\rm fr}$: freeze-out time of particle | | 1 | 17 | | | | r_x^{fr} : freeze-out x coordinate | | 1 | 18 | | | | r_y^{fr} : freeze-out y coordinate | | 1 | 19 | | | | r_z^{fr} : freeze-out z coordinate | | 1 | 20 | | | | E^{fr} : freeze-out energy of particle | | 1 | 21 | | | | p_x^{fr} : freeze-out momentum x component | | 1 | 22 | | | | p_y^{fr} : freeze-out momentum y component | | 1 | 23 | | | | p_z^{fr} : freeze-out momentum z component | | Γ | | 16* | | | $ au_{dec}$ decay time of particle | | | | 17* | | | $ au_{form}$ formation time of particle | | | | 18* | | | R_{σ} cross section reduction factor | | | | 19* | | √ | unique particle number (not ID!) | | | | | | 16* | ityp ₁ ^{old} : particle-ID of parent particle # 1 | | | | | | 17* | ityp ^{old} : particle-ID of parent particle # 2 | #### What is new - Can store spin, iso3_old - Can store parent information (iType_old, iso3_old) during final output - Can store f13 information @ each time step (original f13 only stores final) - Can set quiet output to command screen - Can skip empty event (Ncoll + Ndecays == 0) - Can set random seed event-by-event ## How to store parent information - Integer (4 bytes): origin (origin definition) - \circ = ppType + 100*(# scatters) + 1000*(|iType_old1| + 1000*|iType_old2|) - 0 <= ppType < 100, 0 <= |iType_old| < 1000 - No iso3_old or sign of iType_old | ityp | nucleon | ityp | delta | ityp | lambda | ityp | sigma | ityp | xi | ityp | omega | |------|------------|------|-----------------|------|------------------|------|-----------------|------|--------------|------|-----------------| | 1 | N_{938} | 17 | Δ_{1232} | 27 | Λ_{1116} | 40 | Σ_{1192} | 49 | Ξ_{1317} | 55 | Ω_{1672} | | 2 | N_{1440} | 18 | Δ_{1600} | 28 | Λ_{1405} | 41 | Σ_{1385} | 50 | Ξ_{1530} | | | | 3 | N_{1520} | 19 | Δ_{1620} | 29 | Λ_{1520} | 42 | Σ_{1660} | 51 | Ξ_{1690} | | | | 4 | N_{1535} | 20 | Δ_{1700} | 30 | Λ_{1600} | 43 | Σ_{1670} | 52 | Ξ_{1820} | | | | 5 | N_{1650} | 21 | Δ_{1900} | 31 | Λ_{1670} | 44 | Σ_{1775} | 53 | Ξ_{1950} | | | | 6 | N_{1675} | 22 | Δ_{1905} | 32 | Λ_{1690} | 45 | Σ_{1790} | 54 | Ξ_{2025} | | | | 7 | N_{1680} | 23 | Δ_{1910} | 33 | Λ_{1800} | 46 | Σ_{1915} | | | | | | 8 | N_{1700} | 24 | Δ_{1920} | 34 | Λ_{1810} | 47 | Σ_{1940} | | | | | | 9 | N_{1710} | 25 | Δ_{1930} | 35 | Λ_{1820} | 48 | Σ_{2030} | | | | | | 10 | N_{1720} | 26 | Δ_{1950} | 36 | Λ_{1830} | | | | | | | | 11 | N_{1900} | | | 37 | Λ_{1890} | | | | | | | | 12 | N_{1990} | | | 38 | Λ_{2100} | | | | | | | | 13 | N_{2080} | | | 39 | Λ_{2110} | | | | | | | | 14 | N_{2190} | | | | | | | | | | | | 15 | N_{2200} | | | | | | | | | | | | 16 | N_{2250} | | | | | | | | | | | Table 1: Baryon-itypes used in UrQMD. Antibaryons carry a negative sign. | ityp | 0-+ | ityp | 1 | ityp | 0++ | ityp | 1++ | ityp | charmed | |------|---------|------|----------|------|-----------------|------|-----------------|------|----------| | 101 | π | 104 | ρ | 111 | a_0 | 114 | a_1 | 133 | D | | 106 | K | 108 | K^* | 110 | K_0^* | 113 | K_1^* | 134 | D^* | | 102 | η | 103 | ω | 105 | f_0 | 115 | f_1 | 135 | J/Ψ | | 107 | η' | 109 | ϕ | 112 | f_0^* | 116 | f_1' | 136 | χ_c | | ityp | 1+- | ityp | 2++ | ityp | (1)* | ityp | (1)** | 137 | Ψ' | | 122 | b_1 | 118 | a_2 | 126 | ρ_{1450} | 130 | ρ_{1700} | 138 | D_s | | 121 | K_1 | 117 | K_2^* | 125 | K_{1410}^* | 129 | K_{1680}^* | 139 | D_s^* | | | | | | | | | | | | | 123 | h_1 | 119 | f_2 | 127 | ω_{1420} | 131 | ω_{1662} | | | ``` • ppType = origin% 100 ``` • # scatters = origin/100%10 ### How to store parent information - Integer (4 bytes): origin (new definition) - \circ = ppType + 100*(# scatters) + 1000*((iso3_old1+3)+7*(t_iType_old1+100)) - + 1400000*((iso3_old2+3)+7*(t_iType_old2+100)) - 0 <= ppType < 100, 0 <= iso3_old+3 <= 6 - t_iType_old = iType_old; if(>=100) -=40; if(<=-100) +=40 - $0 <= t_iType_old + 100 < 200$ - origin < 1.96e9 (4-byte integer max ~ 2.1e9) - !!!Also affect *.txt output - ppType = origin% 100 - # scatters = origin/100%10 - If ppType does not contain # scatters, can be stored 1-byte | ityp | nucleon | ityp | delta | ityp | lambda | ityp | sigma | ityp | xi | ityp | omega | |------|------------|------|-----------------|------|------------------|------|-----------------|------|--------------|------|-----------------| | 1 | N_{938} | 17 | Δ_{1232} | 27 | Λ_{1116} | 40 | Σ_{1192} | 49 | Ξ_{1317} | 55 | Ω_{1672} | | 2 | N_{1440} | 18 | Δ_{1600} | 28 | Λ_{1405} | 41 | Σ_{1385} | 50 | Ξ_{1530} | | | | 3 | N_{1520} | 19 | Δ_{1620} | 29 | Λ_{1520} | 42 | Σ_{1660} | 51 | Ξ_{1690} | | | | 4 | N_{1535} | 20 | Δ_{1700} | 30 | Λ_{1600} | 43 | Σ_{1670} | 52 | Ξ_{1820} | | | | 5 | N_{1650} | 21 | Δ_{1900} | 31 | Λ_{1670} | 44 | Σ_{1775} | 53 | Ξ_{1950} | | | | 6 | N_{1675} | 22 | Δ_{1905} | 32 | Λ_{1690} | 45 | Σ_{1790} | 54 | Ξ_{2025} | | | | 7 | N_{1680} | 23 | Δ_{1910} | 33 | Λ_{1800} | 46 | Σ_{1915} | | | | | | 8 | N_{1700} | 24 | Δ_{1920} | 34 | Λ_{1810} | 47 | Σ_{1940} | | | | | | 9 | N_{1710} | 25 | Δ_{1930} | 35 | Λ_{1820} | 48 | Σ_{2030} | | | | | | 10 | N_{1720} | 26 | Δ_{1950} | 36 | Λ_{1830} | | | | | | | | 11 | N_{1900} | | | 37 | Λ_{1890} | | | | | | | | 12 | N_{1990} | | | 38 | Λ_{2100} | | | | | | | | 13 | N_{2080} | | | 39 | Λ_{2110} | | | | | | | | 14 | N_{2190} | | | | | | | | | | | | 15 | N_{2200} | | | | | | | | | | | | 16 | N_{2250} | | | | | | | | | | | Table 1: Baryon-itypes used in UrQMD. Antibaryons carry a negative sign. | ityp | 0-+ | ityp | 1 | ityp | 0++ | ityp | 1++ | ityp | charmed | |------|---------|------|---------|------|-----------------|------|-----------------|------|----------| | 101 | π | 104 | ρ | 111 | a_0 | 114 | a_1 | 133 | D | | 106 | K | 108 | K^* | 110 | K_0^* | 113 | K_1^* | 134 | D^* | | 102 | η | 103 | ω | 105 | f_0 | 115 | f_1 | 135 | J/Ψ | | 107 | η' | 109 | ϕ | 112 | f_0^* | 116 | f_1' | 136 | χ_c | | ityp | 1+- | ityp | 2++ | ityp | (1)* | ityp | (1)** | 137 | Ψ' | | 122 | b_1 | 118 | a_2 | 126 | ρ_{1450} | 130 | ρ_{1700} | 138 | D_s | | 121 | K_1 | 117 | K_2^* | 125 | K_{1410}^* | 129 | K_{1680}^* | 139 | D_s^* | | 123 | h_1 | 119 | f_2 | 127 | ω_{1420} | 131 | ω_{1662} | | | | 124 | h_1' | 120 | f_2' | 128 | ϕ_{1680} | 132 | ϕ_{1900} | | | ## How to set seed for random generator - Random seed generator - iseed is actual seed when used - Changed after each use - ranseed is seed of iseed - 1. set ranseed < 0 - \circ 2. if < 0, set ranseed by time - if different from old - 3. set iseed = -ranseed - 4. modify iseed (extra if < 0) ``` initialize random number generator call auto-seed generator only for first event and if no seed was fixed if(.not.firstseed.and.(.not.fixedseed)) then ranseed=-(1*abs(ranseed)) If .not.fixedseed, it can reset seed call sseed(ranseed) from time almost each event else firstseed=.false. endif If fixedseed, it use only one random sequence (follows last event) ``` ``` subroutine sseed(ranseed) reset the random number generato 0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000 implicit none real*8 dummy, ran2 integer iseed, ranseed, oldseed, time, timeseed common /seed/iseed,oldseed if (ranseed.le.0) then timeseed = abs(time()) if (timeseed.eq.oldseed) return ranseed = timeseed endif oldseed = ranseed iseed = -ranseed dummy = ran2(iseed) return ``` ``` Long period (>2E18) random number generator of L'Ecuyer with Bays-Durham shuffle and added safequards. Returns a uniform random deviate between 0.0 and 1.0 (exclusive of the endpoint values). Call with idum a negative integer to initialize; thereafter, do not alter idum between successive deviates in a sequence. RNMX should approximate the largest floating value that is less than 1. (C) Copr. 1986-92 Numerical Recipes Software. implicit none integer idum, IM1, IM2, IMM1, IA1, IA2, IQ1, IQ2, IR1, IR2, NTAB, NDIV real*8 ran2, AM, EPS, RNMX parameter (IM1=2147483563, IM2=2147483399, AM=1, OD0/IM1, IMM1=IM1-1 IA1=40014, IA2=40692, IQ1=53668, IQ2=52774, IR1=12211, IR2=3791, NTAB=32,NDIV=1+IMM1/NTAB,EPS=1.0D0-16,RNMX=1.0D0-EPS) integer idum2, j, k, iv(NTAB), iy save iv, iy, idum2 data idum2/123456789/, iv/NTAB*0/, iy/0/ if (idum.le.0) then idum=max(-idum,1) idum2=idum do 11 j=NTAB+8,1,-1 k=idum/IO1 idum=IA1*(idum-k*IQ1)-k*IR1 if (idum.lt.0) idum=idum+IM1 if (j.le.NTAB) iv(j)=idum k=idum/IQ1 idum=IA1*(idum-k*IQ1)-k*IR1 if (idum.lt.0) idum=idum+IM1 k=idum2/I02 idum2=IA2*(idum2-k*IQ2)-k*IR2 if (idum2.lt.0) idum2=idum2+IM2 iy=iv(j)-idum2 iv(j)=idum if (iy.lt.1) iy=iy+IMM1 ran2=min(AM*iy,RNMX) ``` ## How to set seed for random generator - Set seed for gRandom by random_device - True random number if supported by compiler - o Set c_use_external_seed = true - Set ranseed uniformly in [-2147483648, 2147483647] - Not finalized yet - Set ranseed only positive? - Add effect of time? - Call ran2 to modify iseed ``` std::random_device rd; gRandom->SetSeed(rd()); c_sets_l_.c_use_external_seed = kTRUE; ``` ``` void c_set_seed_() { sys_.ranseed = (gRandom->Rndm()-0.5)*4294967296; seed_.oldseed = sys_.ranseed; seed_.iseed = -sys_.ranseed; ran2_(&seed_.iseed); } ``` ``` initialize random number generator call auto-seed generator only for first event and if no seed was fixed if (c use external seed) then if (firstseed) firstseed=.false. if (fixedseed) then write(6, *)'c use external seed is neglected due to fixedseed' c use external seed=.false. else call c set seed endif elseif(.not.firstseed.and.(.not.fixedseed)) then ranseed=-(1*abs(ranseed)) call sseed (ranseed) else firstseed=.false. endif ``` ## Other developments - Parent particle Information in collision output - In temporary quantities named t* - No spin, or Nin, rho_b values - Saved to my defined global quantity - Extraction method is the same as other t* - Now time step tree filled after final particle decays rather than after final time step - Unstable particles' decays after all time steps & before the end of event - The same as origin output f14 - If CTOption(4)==1, initial information (t==0) is stored in tree - The same as origin output f14 ## Other developments - Pdgid (int) -> mass (float), iType (short), iso3 (char), charge (char) - Strange masses of protons - Different masses between UrQMD and PDG - Some particles in UrQMD has no pdgid in ityp2pdg.f - Such as iType = 12, 13, 15, 16 ``` Neutron Proton 1, 1, 2212, 3, 1, 2124, 4, -1, 22112, 4, 1, 22212, 6, 1, 2216, 7, 1, 12216, 8, -1, 21214, 8, 1, 22124, 9, -1, 42112, 10, -1, 31214, 10, 1, 32124, 14, 1, 2128, Delta 17, -3, 1114, 17, -1, 2114, 17, 1, 2214, 17, 3, 2224 18, -3, 31114, 18, -1, 32114, 18, 1, 32214, 18, 3, 32224 20, -3, 11114, 20, -1, 12114, 20, 1, 12214, 20, 3, 12224 21, -3, 11112, 21, -1, 11212, 21, 1, 12122, 21, 3, 12222 22, -3, 1116, 22, -1, 1216, 22, 1, 2126, 22, 3, 2226 23, -3, 21112, 23, -1, 21212, 23, 1, 22122, 23, 3, 22222 24, -3, 21114, 24, -1, 22114, 24, 1, 22214, 24, 3, 22224 25, -3, 11116, 25, -1, 11216, 25, 1, 12126, 25, 3, 12226 ``` | data | baryon_names/ | |------|---------------| | | 'Nukleon', | | | 'N(1440)', | | | 'N(1520)', | | | 'N(1535)', | | | 'N(1650)', | | | 'N(1675)', | | | 'N(1680)', | | | 'N(1700)', | | | 'N(1710)', | | | 'N(1720)', | | | 'N(1900)', | | | 'N(1990)', | | | 'N(2080)', | | | 'N(2190)', | | | 'N(2220)', | | | 'N(2250)', | | ityp | nucleon | ityp | delta | ityp | lambda | ityp | sigma | ityp | xi | ityp | omega | |------|------------|------|-----------------|------|------------------|------|-----------------|------|--------------|------|-----------------| | 1 | N_{938} | 17 | Δ_{1232} | 27 | Λ_{1116} | 40 | Σ_{1192} | 49 | Ξ_{1317} | 55 | Ω_{1672} | | 2 | N_{1440} | 18 | Δ_{1600} | 28 | Λ_{1405} | 41 | Σ_{1385} | 50 | Ξ_{1530} | | | | 3 | N_{1520} | 19 | Δ_{1620} | 29 | Λ_{1520} | 42 | Σ_{1660} | 51 | Ξ_{1690} | | | | 4 | N_{1535} | 20 | Δ_{1700} | 30 | Λ_{1600} | 43 | Σ_{1670} | 52 | Ξ_{1820} | | | | 5 | N_{1650} | 21 | Δ_{1900} | 31 | Λ_{1670} | 44 | Σ_{1775} | 53 | Ξ_{1950} | | | | 6 | N_{1675} | 22 | Δ_{1905} | 32 | Λ_{1690} | 45 | Σ_{1790} | 54 | Ξ_{2025} | | | | 7 | N_{1680} | 23 | Δ_{1910} | 33 | Λ_{1800} | 46 | Σ_{1915} | | | | | | 8 | N_{1700} | 24 | Δ_{1920} | 34 | Λ_{1810} | 47 | Σ_{1940} | | | | | | 9 | N_{1710} | 25 | Δ_{1930} | 35 | Λ_{1820} | 48 | Σ_{2030} | | | | | | 10 | N_{1720} | 26 | Δ_{1950} | 36 | Λ_{1830} | | | | | | | | 11 | N_{1900} | | | 37 | Λ_{1890} | | | | | | | | 12 | N_{1990} | | | 38 | Λ_{2100} | | | | | | | | 13 | N_{2080} | | | 39 | Λ_{2110} | | | | | | | | 14 | N_{2190} | | | | | | | | | | | | 15 | N_{2200} | | | | | | | | | | | | 16 | N_{2250} | | | | | | | | | | | Table 1: Baryon-itypes used in UrQMD. Antibaryons carry a negative sign. | ityp | 0-+ | ityp | 1 | ityp | 0++ | ityp | 1++ | ityp | charmed | |------|----------------|------|--------------------------------|------|---------------|------|--------------------------------------|------------|---------------| | 101 | π | 104 | ρ | 111 | a_0 | 114 | a_1 | 133 | D | | 106 | K | 108 | K^* | 110 | K_0^* | 113 | K_1^* | 134 | D^* | | 102 | η | 103 | ω | 105 | f_0 | 115 | f_1 | 135 | J/Ψ | | 107 | η' | 109 | ϕ | 112 | f_0^* | 116 | f_1' | 136 | χ_c | | 24 | 4.1 | | | | | | | | | | ityp | 1+- | ityp | 2++ | ityp | $(1^{})^*$ | ityp | $(1^{})^{**}$ | 137 | Ψ' | | 122 | b ₁ | 118 | 2 ⁺⁺ a ₂ | 126 | ρ_{1450} | 130 | (1)** ρ ₁₇₀₀ | 137
138 | Ψ' D_s | | | | | | | (1) | | (1) | | _ | | 122 | b_1 | 118 | a_2 | 126 | ρ_{1450} | 130 | ρ ₁₇₀₀ | 138 | D_s | Wrong name? #### What to be determined - Npart: Aproject + Atarget #(pptype%100==0) - ppType = origin% 100 - # scatters = origin/100%10 - Some particles only explore scatters, contribute to Npart? ``` 2 2 17 233 1.554 0.5056E+01 0.3978E+02 0.1166E+02 0.8930E+00 362 0.15541405E+01 -0.22213285E+01 0.35829759E+01 -0.71742345E+00 0.17039231E+01 -0.17381395E+00 0.13815719E+01 -0.29078794E+00 0.93800002E+00 1 -1 0 213 1 0 10 233 0.15541405E+01 -0.27680167E+01 0.33953480E+01 -0.60064611E+00 0.85553163E+01 0.20642659E+00 0.13534976E+00 -0.85059975E+01 0.88346555E+00 1 1 1 0 0 0 362 0.15541405E+01 -0.22213285E+01 0.35829759E+01 -0.71742345E+00 0.84217759E+01 0.32168377E+00 0.25335456E-01 -0.83631539E+01 0.93800002E+00 1 -1 0 233 2 0 20 233 0.15541405E+01 -0.27680167E+01 0.33953480E+01 -0.60064611E+00 0.18374634E+01 -0.28907113E+00 0.14915862E+01 -0.43363154E+00 0.93800002E+00 1 1 1 233 1 0 10 ``` ### Check ``` ityp 2i3 chg lcl# nc 73 \quad 0.74690319E - 01 \quad 0.16514065E + 01 \quad 0.84431142E - 01 \quad 0.11221819E - 01 \quad 0.98281818E + 02 \quad 0.14126706E - 01 \quad 0.14864452E + 00 \quad 0.98277421E + 02 \quad 0.91755845E + 00 0.9175584545E + 0.91755845E + 0.9175584545E + 0.9175584545E + 0.917558454545E + 0.917558454545E + 0.917 0 px 73 0.74690319E-01 0.16514065E+01 0.84431142E-01 0.11221819E-01 0.10077745E+03 0.21420381E+01 -0.72458558E+00 -0.10074771E+03 0.93800002E+00 100 py pz Nc ``` ``` root [1] UrqmdCollisionDst->Show(0); =====> EVENT:0 = 13.9877 number time = 0.0746903 = 199.043 sqrts = 52.0758 sigma_total sigma partial = 10.3074 rho B = 14.489 = 17 pType = 2 Nin Nout = 4 Ntracks = 73, uid 352, 73, 352 iType iso3 charge spin = 1, -1, -1, 1 = 1.65141, 0.385643, 1.65141, 0.385643 = 0.0844311, 0.0137725, 0.0844311, 0.0137725 = 0.0112218, 0.0112218, 0.0112218, 0.0112218 = 0.0141267, 0.0926628, 2.14204, -2.03525 = 0.148645, -0.105794, -0.724586, 0.767437 = 98.2774, -100.773, -100.748, 98.2526 = 0.917558, 0.919356, 0.938, 0.938 pcNumber ppType 0, 100, 100 iType_old1 iso3 old1 iType_o1d2 iso3_o1d2 ``` ### Check ``` root [3] UrgmdCollisionDst->Show(3); =====> EVENT:3 = 13.9877 number = 4 time = 0.0848807 = 61.8361 sgrts = 6.74686 sigma_total sigma_partial = <u>5.6639</u> rho_B = 9.46934 pType = 28 Nin Nout Ntracks uid = 412, 400, 418, 419, 420 iType = 17, 113, 17, 101, 108 iso3 -1, -1, -2, 1 charge spin = -1.08297 996111015 X -0.890353, -1.08297, -0.890353, -0.890353 = -0.40725, -0.706899, -0.40725, -0.706899, -0.706899 = 0.0215079, 0.0219206, 0.0215079, 0.0219206, 0.0219206 = -0.227418 -0.399309, -0.227416, -0.283917, -0.115395 = 0.106963 -0.120717, 0.106957, -0.311715, 0.191004 = -52.9585 18.0103, -52.9563, 7.31453, 10.6936 = 1.20804, 1. 25213, 1. 232, 0. 138, 0. 88364 1, 2, 2, 1 pcNumber 2, 4, 4, 4 = 15, ppType 15, 28, 28, 28 iType_old1 1, 17, 17, 17 iso3_o1d1 iType_o1d2 1, 113, 113, 113 iso3_o1d2 -1, -1, -1, -1 ``` ``` 2 3 28 4 0.085 0.6184E+02 0.6747E+01 0.5664E+01 0.9469E+01 412 0.84880709E-01 -0.10829742E+01 -0.40724994E+00 0.21507895E-01 0.52972894E+02 -0.22741829E+00 0.10696294E+00 -0.52958522E+02 0.12080407E+01 17 -1 0 3 1 0 996111015 x 400 0.84880709E-01 -0.89035344E+00 -0.70689933E+00 0.21920565E-01 0.18058629E+02 -0.39930945E+00 -0.12071740E+00 0.18010336E+02 0.12521293E+01 113 -1 0 2 1 -1 993311015 418 0.84880709E-01 -0.10829742E+01 -0.40724994E+00 0.21507895E-01 0.52971212E+02 -0.22741600E+00 0.10695713E+00 -0.52956287E+02 0.12320000E+01 17 -1 0 4 2 0 1699021028 y 419 0.84880709E-01 -0.89035344E+00 -0.70689933E+00 0.21920565E-01 0.73279741E+01 -0.28391694E+00 -0.31171549E+00 0.73145324E+01 0.13800000E+00 101 -2 -1 4 2 0 1699021028 d 420 0.84880709E-01 -0.89035344E+00 -0.70689933E+00 0.21920565E-01 0.10732337E+02 -0.11539479E+00 0.19100390E+00 0.10693570E+02 0.88364039E+00 108 1 1 4 1 -1 1699021028 d 420 0.84880709E-01 -0.89035344E+00 -0.70689933E+00 0.21920565E-01 0.10732337E+02 -0.11539479E+00 0.19100390E+00 0.10693570E+02 0.88364039E+00 108 1 1 4 1 -1 1699021028 d 420 0.84880709E-01 -0.89035344E+00 -0.70689933E+00 0.21920565E-01 0.10732337E+02 -0.11539479E+00 0.19100390E+00 0.10693570E+02 0.88364039E+00 108 1 1 4 1 -1 1699021028 d 420 0.84880709E-01 -0.89035344E+00 -0.70689933E+00 0.21920565E-01 0.10732337E+02 -0.11539479E+00 0.19100390E+00 0.10693570E+02 0.88364039E+00 108 1 1 4 1 -1 1699021028 d 420 0.84880709E-01 -0.89035344E+00 -0.70689933E+00 0.21920565E-01 0.10732337E+02 -0.11539479E+00 0.19100390E+00 0.10693570E+02 0.88364039E+00 108 1 1 4 1 -1 1699021028 d 420 0.84880709E-01 -0.89035344E+00 -0.70689933E+00 0.21920565E-01 0.10732337E+02 -0.11539479E+00 0.19100390E+00 0.10693570E+02 0.88364039E+00 108 1 1 4 1 -1 1699021028 d 420 0.84880709E-01 -0.89035344E+00 -0.70689933E+00 0.21920565E-01 0.10732337E+02 -0.11539479E+00 0.19100390E+00 0.10693570E+02 0.88364039E+00 108 1 1 4 1 -1 1699021028 d 420 0.84880709E-01 -0.89035344E+00 -0.70689933E+00 0.21920565E-01 0.10732337E+02 -0.11539479E+00 0.19100390E+00 0.106 ``` ### Check ``` root [4] UrgmdCollisionDst->Show(10); =====> EVENT:10 = 13.9877 = 11 number time = 3.86413 = 1.32149 sgrts sigma_total sigma partial rho_B = 0.00949667 pType Nin = 20 Nout Ntracks uid = 447, 462, 463 = 118, iType 101, 104 = 2, iso3 charge spin = -2, = -0.446549 -0.446549, -0.446549 = -1.2298, -1. 2298, -1. 2298 = -2.79132, -2. 79132, -2. 79132 = 0.242734, 0.16513, 0.0776042 = -0.285845, ру -0.169923, -0.115922 = -1.54135. -0.0961053, -1.44524 = 1.32149, 0.138, 1.0194 pcNumber = 28, ppType 20, 20 iType_old1 = 101, 118, 118 iso3_o1d1 2, 2 iType_o1d2 iso3_o1d2 ```