UrQMD (Fortran) calls ROOT (C++)

Fan Si

Status

- Generally successful (but with some cases to be determined / developed)
 - Define C++ functions, and let them called by Fortran at proper locations
 - Define C++ extern struct to link Fortran quantities (commons)
- Location: ui:/ustcfs/HICUser/fsi/urqmd
- Original UrQMD: /ustcfs/HICUser/fsi/urqmd/urqmd
 - Change: pythia6409.f -> pytahi6428.f (final pythia6), GNUmakefile updated
 - Change: new gfortran option -std=legacy in mk/Linux.mk
- New Fortran & C++ codes: /ustcfs/HICUser/fsi/urqmd/curqmd
 - ° c_*.f, curqmd.[cxx,h], GNUmakefile, run.sh

What to store (UrqmdDst)

column#		contents
0		"E" (only in O016)
1		# of collisions
2		# of elastic collisions
3	J	# of inelastic collisions
4	۷ ما	# of Pauli-blocked collisions
5	V	# of decays
6	V	# of produced hard baryon resonances
7	$\sqrt{}$	# of produced <i>soft</i> baryon resonances
8		# of baryon resonances produced via a decay of another resonance

- Entry for each time step of events (few)
- Additional branch
 - b
 - time: event level (instead of track level)
 - Npart: Aproject + Atarget #(pptype%100==0)
 - Ntracks
 - spin
 - iso3_old1 & iso3_old2

O ⁰¹³	O ^{O14}	O ⁰¹⁵	O ^O 16	contents
		1		ind: index of particle (see CTOption (56))
1	1	2	1	t: time of particle
2	2	3	2 🗸	r_x : x coordinate
3	3	4	3 🗸	r_y : y coordinate
4	4	5	4 🗸	r_z : z coordinate
5	5	6	5	E: energy of particle
6	6	7	6 √	p_x : x momentum component
7	7	8	7 🗸	p_y : y momentum component
8	8	9	8 🗸	p_z : z momentum component
9	9	10	9 🗸	m: mass of particle
10	10	11	10	ityp: particle-ID
11	11	12	11 🗸	iso3: $2 \cdot I_3$ (see Section 1.2)
12	12	13	12 🗸	
13	13	14	13 🗸	parent collision number (see Table 10)
14	14	15	14 🗸	N_{coll} number of collisions
		16		S: strangeness
15	15		15 🗸	parent process type (see Table 111)
		17	, i	history information (debugging only)
16			√	t^{fr} : freeze-out time of particle
17			$\sqrt{}$	r_x^{fr} : freeze-out x coordinate
18			$\sqrt{}$	r_y^{fr} : freeze-out y coordinate
19			$\sqrt{}$	r_z^{fr} : freeze-out z coordinate
20			, i	E^{fr} : freeze-out energy of particle
21			$\sqrt{}$	p_x^{fr} : freeze-out momentum x component
22			$\sqrt{}$	p_y^{fr} : freeze-out momentum y component
23			$\sqrt{}$	p_z^{fr} : freeze-out momentum z component
	16*		V	$ au_{dec}$ decay time of particle
	17*		$\sqrt{}$	$ au_{form}$ formation time of particle
	18*		$\sqrt{}$	R_{σ} cross section reduction factor
	19*		$\sqrt{}$	unique particle number (not ID!)
			16*	ityp ₁ ^{old} : particle-ID of parent particle # 1
			17*	$ityp_2^{old}$: particle-ID of parent particle # 2

What to store (UrqmdCollisionDst)

colu	mn#	format	contents
1		(i8)	number of ingoing particles $N_{\rm in}$
2	J	(i8)	number of outgoing particles $N_{ m out}$
3	J	(i4)	process ID (see Table 11)
4	1	(i7)	collision/entry counter
5	V	(f8.3)	collision time $t_{\rm coll}$ in fm/ c
6	V	(e12.4)	center of mass energy of the collision \sqrt{s} in GeV
7	√,	(e12.4)	total cross-section of the collision σ_{tot} in mbarn
8		(e12.4)	partial cross-section of the actual sub-process σ_i in mbarn
9		(e12.4)	Baryon density at collision point $\rho_{\rm B}$ in units of $\rho_{\rm 0}$

- Not created or stored if storeCollision = false
- Entry for each collision of events (many)
- Additional branch
 - b
 - Ntracks
 - spin
 - iso3_old1 & iso3_old2

	_O O13	o ^{O14}	_O O15	o ^{O16}	contents
Γ			1		ind: index of particle (see CTOption (56))
1	1	1	2	1	t: time of particle
1	2	2	3	2 🗸	r_x : x coordinate
1	3	3	4	3 🗸	r_y : y coordinate
1	4	4	5	4 🗸	r_z : z coordinate
1	5	5	6	5	E: energy of particle
1	6	6	7	6 √	p_x : x momentum component
1	7	7	8	7 🗸	p_y : y momentum component
1	8	8	9	8 √	p_z : z momentum component
1	9	9	10	9 🗸	m: mass of particle
1	10	10	11	10 🗸	ityp: particle-ID
1	11	11	12	11 🗸	
1	12	12	13	12 🗸	ch: charge of particle
1	13	13	14	13 🗸	parent collision number (see Table 10)
1	14	14	15	14 🗸	N_{coll} number of collisions
1			16		S: strangeness
1	15	15		15 √	parent process type (see Table [1])
1			17	, i	history information (debugging only)
Γ	16				$t^{\rm fr}$: freeze-out time of particle
1	17				r_x^{fr} : freeze-out x coordinate
1	18				r_y^{fr} : freeze-out y coordinate
1	19				r_z^{fr} : freeze-out z coordinate
1	20				Efr: freeze-out energy of particle
1	21				p_x^{fr} : freeze-out momentum x component
1	22				p_y^{fr} : freeze-out momentum y component
1	23				p_z^{fr} : freeze-out momentum z component
Γ		16*			$ au_{dec}$ decay time of particle
		17*			$ au_{form}$ formation time of particle
		18*			R_{σ} cross section reduction factor
		19*		 √	unique particle number (not ID!)
Γ				16*	ityp ₁ ^{old} : particle-ID of parent particle # 1
				17*	$ityp_2^{\rm old}$: particle-ID of parent particle # 2

What is new

- Can store spin, iso3_old
- Can store parent information (iType_old, iso3_old) during final output
- Can store f13 information @ each time step (original f13 only stores final)
- Can set quiet output to command screen
- Can skip empty event (Ncoll + Ndecays == 0)
- Can set random seed event-by-event

How to store parent information

- Integer (4 bytes): origin (origin definition)
 - \circ = ppType + 100*(# scatters) + 1000*(|iType_old1| + 1000*|iType_old2|)
 - 0 <= ppType < 100, 0 <= |iType_old| < 1000
 - No iso3_old or sign of iType_old

ityp	nucleon	ityp	delta	ityp	lambda	ityp	sigma	ityp	xi	ityp	omega
1	N_{938}	17	Δ_{1232}	27	Λ_{1116}	40	Σ_{1192}	49	Ξ_{1317}	55	Ω_{1672}
2	N_{1440}	18	Δ_{1600}	28	Λ_{1405}	41	Σ_{1385}	50	Ξ_{1530}		
3	N_{1520}	19	Δ_{1620}	29	Λ_{1520}	42	Σ_{1660}	51	Ξ_{1690}		
4	N_{1535}	20	Δ_{1700}	30	Λ_{1600}	43	Σ_{1670}	52	Ξ_{1820}		
5	N_{1650}	21	Δ_{1900}	31	Λ_{1670}	44	Σ_{1775}	53	Ξ_{1950}		
6	N_{1675}	22	Δ_{1905}	32	Λ_{1690}	45	Σ_{1790}	54	Ξ_{2025}		
7	N_{1680}	23	Δ_{1910}	33	Λ_{1800}	46	Σ_{1915}				
8	N_{1700}	24	Δ_{1920}	34	Λ_{1810}	47	Σ_{1940}				
9	N_{1710}	25	Δ_{1930}	35	Λ_{1820}	48	Σ_{2030}				
10	N_{1720}	26	Δ_{1950}	36	Λ_{1830}						
11	N_{1900}			37	Λ_{1890}						
12	N_{1990}			38	Λ_{2100}						
13	N_{2080}			39	Λ_{2110}						
14	N_{2190}										
15	N_{2200}										
16	N_{2250}										

Table 1: Baryon-itypes used in UrQMD. Antibaryons carry a negative sign.

ityp	0-+	ityp	1	ityp	0++	ityp	1++	ityp	charmed
101	π	104	ρ	111	a_0	114	a_1	133	D
106	K	108	K^*	110	K_0^*	113	K_1^*	134	D^*
102	η	103	ω	105	f_0	115	f_1	135	J/Ψ
107	η'	109	ϕ	112	f_0^*	116	f_1'	136	χ_c
ityp	1+-	ityp	2++	ityp	(1)*	ityp	(1)**	137	Ψ'
122	b_1	118	a_2	126	ρ_{1450}	130	ρ_{1700}	138	D_s
121	K_1	117	K_2^*	125	K_{1410}^*	129	K_{1680}^*	139	D_s^*
123	h_1	119	f_2	127	ω_{1420}	131	ω_{1662}		

```
• ppType = origin% 100
```

• # scatters = origin/100%10

How to store parent information

- Integer (4 bytes): origin (new definition)
 - \circ = ppType + 100*(# scatters) + 1000*((iso3_old1+3)+7*(t_iType_old1+100))
 - $+ 1400000*((iso3_old2+3)+7*(t_iType_old2+100))$
 - 0 <= ppType < 100, 0 <= iso3_old+3 <= 6
 - t_iType_old = iType_old; if(>=100) -=40; if(<=-100) +=40
 - $0 <= t_iType_old + 100 < 200$
 - origin < 1.96e9 (4-byte integer max ~ 2.1e9)
 - !!!Also affect *.txt output
 - ppType = origin% 100
 - # scatters = origin/100%10
 - If ppType does not contain # scatters, can be stored 1-byte

ityp	nucleon	ityp	delta	ityp	lambda	ityp	sigma	ityp	xi	ityp	omega
1	N_{938}	17	Δ_{1232}	27	Λ_{1116}	40	Σ_{1192}	49	Ξ_{1317}	55	Ω_{1672}
2	N_{1440}	18	Δ_{1600}	28	Λ_{1405}	41	Σ_{1385}	50	Ξ_{1530}		
3	N_{1520}	19	Δ_{1620}	29	Λ_{1520}	42	Σ_{1660}	51	Ξ_{1690}		
4	N_{1535}	20	Δ_{1700}	30	Λ_{1600}	43	Σ_{1670}	52	Ξ_{1820}		
5	N_{1650}	21	Δ_{1900}	31	Λ_{1670}	44	Σ_{1775}	53	Ξ_{1950}		
6	N_{1675}	22	Δ_{1905}	32	Λ_{1690}	45	Σ_{1790}	54	Ξ_{2025}		
7	N_{1680}	23	Δ_{1910}	33	Λ_{1800}	46	Σ_{1915}				
8	N_{1700}	24	Δ_{1920}	34	Λ_{1810}	47	Σ_{1940}				
9	N_{1710}	25	Δ_{1930}	35	Λ_{1820}	48	Σ_{2030}				
10	N_{1720}	26	Δ_{1950}	36	Λ_{1830}						
11	N_{1900}			37	Λ_{1890}						
12	N_{1990}			38	Λ_{2100}						
13	N_{2080}			39	Λ_{2110}						
14	N_{2190}										
15	N_{2200}										
16	N_{2250}										

Table 1: Baryon-itypes used in UrQMD. Antibaryons carry a negative sign.

ityp	0-+	ityp	1	ityp	0++	ityp	1++	ityp	charmed
101	π	104	ρ	111	a_0	114	a_1	133	D
106	K	108	K^*	110	K_0^*	113	K_1^*	134	D^*
102	η	103	ω	105	f_0	115	f_1	135	J/Ψ
107	η'	109	ϕ	112	f_0^*	116	f_1'	136	χ_c
ityp	1+-	ityp	2++	ityp	$(1^{})^*$	ityp	$(1^{})^{**}$	137	Ψ'
122	b ₁	118	2 ⁺⁺ a ₂	126	ρ_{1450}	130	ρ_{1700}	137 138	$\Psi' \ D_s$
					(1)		(1)		_
122	b_1	118	a_2	126	ρ_{1450}	130	ρ ₁₇₀₀	138	D_s

How to set seed for random generator

- Random seed generator
 - iseed is actual seed when used
 - Changed after each use
 - ranseed is seed of iseed
 - 1. set ranseed < 0
 - \circ 2. if < 0, set ranseed by time
 - if different from old
 - 3. set iseed = -ranseed
 - 4. modify iseed (extra if < 0)

```
initialize random number generator

call auto-seed generator only for first event and if no seed was fixed if(.not.firstseed.and.(.not.fixedseed)) then

ranseed=-(1*abs(ranseed)) If .not.fixedseed, it can reset seed call sseed(ranseed) from time almost each event else

firstseed=.false.

endif If (not.firstseed was fixed if (.not.fixedseed, it can reset seed from time almost each event was fixed if (.not.fixedseed, it can reset seed from time almost each event was fixed if (.not.fixedseed, it can reset seed from time almost each event was fixed if (.not.fixedseed, it use only one random sequence (follows last event)
```

```
subroutine sseed(ranseed)
                                                                           Long period (>2E18) random number generator of L'Ecuyer with
                                                                           Bays-Durham shuffle and added safequards. Returns a uniform random
                                                                           deviate between 0.0 and 1.0 (exclusive of the endpoint values).
       reset the random number generato
                                                                           Call with idum a negative integer to initialize; thereafter, do
                                                                           not alter idum between successive deviates in a sequence. RNMX
                                                                           should approximate the largest floating value that is less than 1.
0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000
                                                                            (C) Copr. 1986-92 Numerical Recipes Software.
       implicit none
                                                                               implicit none
       real*8 dummy, ran2
       integer iseed, ranseed, oldseed, time, timeseed
                                                                               integer idum, IM1, IM2, IMM1, IA1, IA2, IQ1, IQ2, IR1, IR2, NTAB, NDIV
       common /seed/iseed,oldseed
                                                                               real*8 ran2, AM, EPS, RNMX
                                                                               parameter (IM1=2147483563, IM2=2147483399, AM=1, OD0/IM1, IMM1=IM1-1
       if (ranseed.le.0) then
                                                                                   IA1=40014, IA2=40692, IQ1=53668, IQ2=52774, IR1=12211, IR2=3791,
           timeseed = abs(time())
                                                                                   NTAB=32,NDIV=1+IMM1/NTAB,EPS=1.0D0-16,RNMX=1.0D0-EPS)
                                                                               integer idum2, j, k, iv(NTAB), iy
           if (timeseed.eq.oldseed) return
                                                                               save iv, iy, idum2
           ranseed = timeseed
                                                                               data idum2/123456789/, iv/NTAB*0/, iy/0/
       endif
                                                                               if (idum.le.0) then
      oldseed = ranseed
                                                                                  idum=max(-idum,1)
       iseed = -ranseed
                                                                                  idum2=idum
                                                                                  do 11 j=NTAB+8,1,-1
      dummy = ran2(iseed)
                                                                                    k=idum/IO1
                                                                                    idum=IA1*(idum-k*IQ1)-k*IR1
                                                                                    if (idum.lt.0) idum=idum+IM1
       return
                                                                                    if (j.le.NTAB) iv(j)=idum
                                                                               k=idum/IQ1
                                                                               idum=IA1*(idum-k*IQ1)-k*IR1
                                                                               if (idum.lt.0) idum=idum+IM1
                                                                               k=idum2/I02
                                                                               idum2=IA2*(idum2-k*IQ2)-k*IR2
                                                                               if (idum2.lt.0) idum2=idum2+IM2
                                                                               iy=iv(j)-idum2
                                                                               iv(j)=idum
                                                                               if (iy.lt.1) iy=iy+IMM1
```

ran2=min(AM*iy,RNMX)

How to set seed for random generator

- Set seed for gRandom by random_device
 - True random number if supported by compiler
- o Set c_use_external_seed = true
- Set ranseed uniformly in [-2147483648, 2147483647]
 - Not finalized yet
 - Set ranseed only positive?
 - Add effect of time?
- Call ran2 to modify iseed

```
std::random_device rd;
gRandom->SetSeed(rd());

c_sets_l_.c_use_external_seed = kTRUE;
```

```
void c_set_seed_() {
    sys_.ranseed = (gRandom->Rndm()-0.5)*4294967296;
    seed_.oldseed = sys_.ranseed;
    seed_.iseed = -sys_.ranseed;
    ran2_(&seed_.iseed);
}
```

```
initialize random number generator
call auto-seed generator only for first event and if no seed was fixed
if (c use external seed) then
 if (firstseed) firstseed=.false.
 if (fixedseed) then
   write(6, *)'c use external seed is neglected due to fixedseed'
   c use external seed=.false.
 else
    call c set seed
 endif
elseif(.not.firstseed.and.(.not.fixedseed)) then
   ranseed=-(1*abs(ranseed))
  call sseed (ranseed)
else
   firstseed=.false.
endif
```

Other developments

- Parent particle Information in collision output
 - In temporary quantities named t*
 - No spin, or Nin, rho_b values
 - Saved to my defined global quantity
 - Extraction method is the same as other t*
- Now time step tree filled after final particle decays rather than after final time step
 - Unstable particles' decays after all time steps & before the end of event
 - The same as origin output f14
- If CTOption(4)==1, initial information (t==0) is stored in tree
 - The same as origin output f14

Other developments

- Pdgid (int) -> mass (float), iType (short), iso3 (char), charge (char)
 - Strange masses of protons
 - Different masses between UrQMD and PDG
 - Some particles in UrQMD has no pdgid in ityp2pdg.f
 - Such as iType = 12, 13, 15, 16

```
Neutron
Proton
          1, 1, 2212,
                              3, 1, 2124,
          4, -1, 22112,
                             4, 1, 22212,
                             6, 1, 2216,
                            7, 1, 12216,
          8, -1, 21214,
                            8, 1, 22124,
          9, -1, 42112,
         10, -1, 31214,
                             10, 1, 32124,
                             14, 1, 2128,
Delta
         17, -3, 1114, 17, -1, 2114, 17, 1, 2214, 17, 3, 2224
         18, -3, 31114, 18, -1, 32114, 18, 1, 32214, 18, 3, 32224
         20, -3, 11114, 20, -1, 12114, 20, 1, 12214, 20, 3, 12224
         21, -3, 11112, 21, -1, 11212, 21, 1, 12122, 21, 3, 12222
         22, -3, 1116, 22, -1, 1216, 22, 1, 2126, 22, 3, 2226
         23, -3, 21112, 23, -1, 21212, 23, 1, 22122, 23, 3, 22222
         24, -3, 21114, 24, -1, 22114, 24, 1, 22214, 24, 3, 22224
         25, -3, 11116, 25, -1, 11216, 25, 1, 12126, 25, 3, 12226
```

data	baryon_names/
	'Nukleon',
	'N(1440)',
	'N(1520)',
	'N(1535)',
	'N(1650)',
	'N(1675)',
	'N(1680)',
	'N(1700)',
	'N(1710)',
	'N(1720)',
	'N(1900)',
	'N(1990)',
	'N(2080)',
	'N(2190)',
	'N(2220)',
	'N(2250)',

ityp	nucleon	ityp	delta	ityp	lambda	ityp	sigma	ityp	xi	ityp	omega
1	N_{938}	17	Δ_{1232}	27	Λ_{1116}	40	Σ_{1192}	49	Ξ_{1317}	55	Ω_{1672}
2	N_{1440}	18	Δ_{1600}	28	Λ_{1405}	41	Σ_{1385}	50	Ξ_{1530}		
3	N_{1520}	19	Δ_{1620}	29	Λ_{1520}	42	Σ_{1660}	51	Ξ_{1690}		
4	N_{1535}	20	Δ_{1700}	30	Λ_{1600}	43	Σ_{1670}	52	Ξ_{1820}		
5	N_{1650}	21	Δ_{1900}	31	Λ_{1670}	44	Σ_{1775}	53	Ξ_{1950}		
6	N_{1675}	22	Δ_{1905}	32	Λ_{1690}	45	Σ_{1790}	54	Ξ_{2025}		
7	N_{1680}	23	Δ_{1910}	33	Λ_{1800}	46	Σ_{1915}				
8	N_{1700}	24	Δ_{1920}	34	Λ_{1810}	47	Σ_{1940}				
9	N_{1710}	25	Δ_{1930}	35	Λ_{1820}	48	Σ_{2030}				
10	N_{1720}	26	Δ_{1950}	36	Λ_{1830}						
11	N_{1900}			37	Λ_{1890}						
12	N_{1990}			38	Λ_{2100}						
13	N_{2080}			39	Λ_{2110}						
14	N_{2190}										
15	N_{2200}										
16	N_{2250}										

Table 1: Baryon-itypes used in UrQMD. Antibaryons carry a negative sign.

ityp	0-+	ityp	1	ityp	0++	ityp	1++	ityp	charmed
101	π	104	ρ	111	a_0	114	a_1	133	D
106	K	108	K^*	110	K_0^*	113	K_1^*	134	D^*
102	η	103	ω	105	f_0	115	f_1	135	J/Ψ
107	η'	109	ϕ	112	f_0^*	116	f_1'	136	χ_c
ityp	1+-	ityp	2++	ityp	(1)*	ityp	(1)**	137	Ψ'
ityp 122	1+- b ₁	ityp 118	2 ⁺⁺ a ₂	ityp 126	$(1^{})^*$ ρ_{1450}	ityp 130	$(1^{})^{**}$ ρ_{1700}	137 138	Ψ' D_s
					$(1^{})^*$ ρ_{1450} K_{1410}^*		(1)		_
122	b_1	118	a_2	126		130	ρ ₁₇₀₀	138	D_s

Wrong name?

What to be determined

- Npart: Aproject + Atarget #(pptype%100==0)
 - ppType = origin% 100
 - # scatters = origin/100%10
 - Some particles only explore scatters, contribute to Npart?

```
2 2 17 233 1.554 0.5056E+01 0.3978E+02 0.1166E+02 0.8930E+00

362 0.15541405E+01 -0.22213285E+01 0.35829759E+01 -0.71742345E+00 0.17039231E+01 -0.17381395E+00 0.13815719E+01 -0.29078794E+00 0.93800002E+00 1 -1 0 213 1 0 10

233 0.15541405E+01 -0.27680167E+01 0.33953480E+01 -0.60064611E+00 0.85553163E+01 0.20642659E+00 0.13534976E+00 -0.85059975E+01 0.88346555E+00 1 1 1 0 0 0

362 0.15541405E+01 -0.22213285E+01 0.35829759E+01 -0.71742345E+00 0.84217759E+01 0.32168377E+00 0.25335456E-01 -0.83631539E+01 0.93800002E+00 1 -1 0 233 2 0 20

233 0.15541405E+01 -0.27680167E+01 0.33953480E+01 -0.60064611E+00 0.18374634E+01 -0.28907113E+00 0.14915862E+01 -0.43363154E+00 0.93800002E+00 1 1 1 233 1 0 10
```

Check

```
ityp 2i3 chg lcl# nc
 73 \quad 0.74690319E - 01 \quad 0.16514065E + 01 \quad 0.84431142E - 01 \quad 0.11221819E - 01 \quad 0.98281818E + 02 \quad 0.14126706E - 01 \quad 0.14864452E + 00 \quad 0.98277421E + 02 \quad 0.91755845E + 00 \quad 0.91755845E + 0.9175584545E + 0.91755845E + 0.9175584545E + 0.91755845E + 0.91755845E + 0.91755845E + 0.91755845E + 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              0 px
73 0.74690319E-01 0.16514065E+01 0.84431142E-01 0.11221819E-01 0.10077745E+03 0.21420381E+01 -0.72458558E+00 -0.10074771E+03 0.93800002E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            100 py
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     pz
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Nc
```

```
root [1] UrqmdCollisionDst->Show(0);
=====> EVENT:0
                = 13.9877
number
time
                = 0.0746903
                = 199.043
sqrts
                = 52.0758
sigma_total
sigma partial
                = 10.3074
rho B
                = 14.489
                = 17
pType
                = 2
Nin
Nout
                = 4
Ntracks
                = 73,
uid
                 352,
                      73, 352
iType
iso3
charge
spin
                = 1,
                 -1, -1, 1
                = 1.65141,
                 0.385643, 1.65141, 0.385643
                = 0.0844311,
                 0.0137725, 0.0844311, 0.0137725
                = 0.0112218,
                 0.0112218, 0.0112218, 0.0112218
                = 0.0141267,
                 0.0926628, 2.14204, -2.03525
                = 0.148645,
                 -0.105794, -0.724586, 0.767437
                = 98.2774,
                 -100.773, -100.748, 98.2526
                = 0.917558,
                 0.919356, 0.938, 0.938
pcNumber
ppType
                 0, 100, 100
iType_old1
iso3 old1
iType_o1d2
iso3_o1d2
```

Check

```
number
                                                                                                                                                                                                             = 4
                                                                                                                                                                                             time
                                                                                                                                                                                                             = 0.0848807
                                                                                                                                                                                                             = 61.8361
                                                                                                                                                                                            sgrts
                                                                                                                                                                                                             = 6.74686
                                                                                                                                                                                            sigma_total
                                                                                                                                                                                            sigma_partia1 = <u>5.6639</u>
                                                                                                                                                                                            rho_B
                                                                                                                                                                                                             = 9.46934
                                                                                                                                                                                            pType
                                                                                                                                                                                                             = 28
                                                                                                                                                                                            Nin
                                                                                                                                                                                            Nout
                                                                                                                                                                                            Ntracks
                                                                                                                                                                                            uid
                                                                                                                                                                                                             = 412,
                                                                                                                                                                                                              400, 418, 419, 420
                                                                                                                                                                                            iType
                                                                                                                                                                                                             = 17,
                                                                                                                                                                                                              113, 17, 101, 108
                                                                                                                                                                                            iso3
                                                                                                                                                                                                              -1, -1, -2, 1
                                                                                                                                                                                            charge
                                                                                                                                                                                             spin
                     4 0.085 0.6184E+02 0.6747E+01 0.5664E+01 0.9469E+01
                                                                                                                                                                                                             = -1.08297
                                                                                                                                                                                  996111015 X
412 0.84880709E-01 -0.10829742E+01 -0.40724994E+00 0.21507895E-01 0.52972894E+02 -0.22741829E+00 0.10696294E+00 -0.52958522E+02 0.12080407E+01
                                                                                                                                                                                                              -0.890353, -1.08297, -0.890353, -0.890353
400 0.84880709E-01 -0.89035344E+00 -0.70689933E+00 0.21920565E-01 0.18058629E+02 -0.39930945E+00 -0.12071740E+00 0.18010336E+02 0.12521293E+01
                                                                                                                                                                                                             = -0.40725,
                                                                                                                                                                                 1699021028 <sup>y</sup>
418 0.84880709E-01 -0.10829742E+01 -0.40724994E+00 0.21507895E-01 0.52971212E+02 -0.22741600E+00 0.10695713E+00 -0.52956287E+02 0.12320000E+01
                                                                                                                                                                                                              -0.706899, -0.40725, -0.706899, -0.706899
419 0.84880709E-01 -0.89035344E+00 -0.70689933E+00 0.21920565E-01 0.73279741E+01 -0.28391694E+00 -0.31171549E+00 0.73145324E+01 0.13800000E+00
                                                                                                                                                                                                             = 0.0215079,
420 0.84880709E-01 -0.89035344E+00 -0.70689933E+00 0.21920565E-01 0.10732337E+02 -0.11539479E+00 0.19100390E+00 0.10693570E+02 0.88364039E+00
                                                                                                                                                                                                              0.0219206, 0.0215079, 0.0219206, 0.0219206
                                                                                                                                                                                                             = -0.227418,
                                                                                                                                                                                                              -0.399309, -0.227416, -0.283917, -0.115395
                                                                                                                                                                                                             = 0.106963
                                                                                                                                                                                                              -0.120717, 0.106957, -0.311715, 0.191004
                                                                                                                                                                                                             = -52.9585
                                                                                                                                                                                                              18.0103, -52.9563, 7.31453, 10.6936
                                                                                                                                                                                                             = 1.20804,
                                                                                                                                                                                                              1. 25213, 1. 232, 0. 138, 0. 88364
                                                                                                                                                                                                              1, 2, 2, 1
                                                                                                                                                                                             pcNumber
                                                                                                                                                                                                              2, 4, 4, 4
                                                                                                                                                                                                             = 15,
                                                                                                                                                                                            ppType
                                                                                                                                                                                                              15, 28, 28, 28
                                                                                                                                                                                            iType_old1
                                                                                                                                                                                                              1, 17, 17, 17
                                                                                                                                                                                            iso3_o1d1
                                                                                                                                                                                            iType_o1d2
                                                                                                                                                                                                              1, 113, 113, 113
                                                                                                                                                                                            iso3_o1d2
```

root [3] UrgmdCollisionDst->Show(3);

= 13.9877

-1, -1, -1, -1

=====> EVENT:3

Check

```
root [4] UrgmdCollisionDst->Show(10);
       =====> EVENT:10
                       = 13.9877
                       = 11
       number
       time
                       = 3.86413
                       = 1.32149
       sgrts
       sigma_total
       sigma partial
       rho_B
                       = 0.00949667
       pType
Nin
                       = 20
       Nout
       Ntracks
       uid
                       = 447,
                        462, 463
                       = 118,
       iType
                        101, 104
                       = 2,
       iso3
       charge
       spin
                       = -2,
                       = -0.446549
                        -0.446549, -0.446549
                       = -1.2298,
                        -1. 2298, -1. 2298
1251020 z
                       = -2.79132,
                        -2. 79132, -2. 79132
                       = 0.242734,
                       0.16513, 0.0776042
                       = -0.285845,
       ру
                        -0.169923, -0.115922
                       = -1.54135.
                        -0.0961053, -1.44524
                       = 1.32149,
                       0.138, 1.0194
       pcNumber
                       = 28,
       ppType
                        20, 20
      iType_old1
                       = 101,
                        118, 118
      iso3_o1d1
                       2, 2
      iType_o1d2
      iso3_o1d2
```

- $(b_{\text{max}})_{\text{max}} = \text{nucrad}(Ap) + \text{nucrad}(At) + 2*CTParam(30)$
 - CTP(30): radius offset for initialization (1.5 default)
 - $^{\circ}$ ¹⁹⁷Au+¹⁹⁷Au: 15.82 = 6.41+6.41+1.5*2

```
function nucrad(AA)
     implicit none
     real*8 nucrad, r 0
     integer A, AA
     include 'coms.f'
     include 'options.f'
     A=abs(AA)/CTParam(67)
c root mean square radius of nucleus of mass A
c r 0 corresponding to rho0
     if (CTOption(24).eq.1) then
c root mean square radius of nucleus of mass A (Mayer-Kuckuck)
        nucrad = 1.128 * a**(1./3.) - 0.89 * a**(-(1./3.))
     else
        r = (0.75/pi/rho0)**(1./3.)
c subtract gaussian tails, for distributing centroids correctly
        nucrad = r = 0*(0.5*(a + (a**(1./3.)-1.)**3.))**(1./3.)
     endif
     return
     end
```

opro: 197 79

• tar: 16 8

$$\circ \sqrt{s_{\rm NN}} = 200 \text{ GeV}$$

- b = 9 fm
- \cdot t=0
- Center: pro (b/2, 0), tar (-b/2, 0)
- Radius: nucrad(A)+CTParam(30)
 - But CTP(30) only contributes to $(b_{\text{max}})_{\text{max}}$ rather than nuclei initialization

•
$$N_{\text{part}} = \#((x-b/2)^2 + y^2 < R(\text{pro}) \&\& (x+b/2) + y^2 < R(\text{tar}))$$
 at $t = 0$

- $^{\circ}$ ¹⁹⁷Au+¹⁹⁷Au, $0 \le b < (b_{\text{max}})_{\text{max}}$
- $\circ \sqrt{s_{\rm NN}} = 200 \text{ GeV}$
- t = 100 fm/c

- Npart: old definition
- Npart0: new definition

$$^{\circ}$$
 ¹⁹⁷Au+¹⁶O, 0 <= $b < (b_{\text{max}})_{\text{max}}$

$$\circ \sqrt{s_{\rm NN}} = 200 \text{ GeV}$$

•
$$t = 100 \text{ fm/}c$$

- Left: CTP(30) = 1.5 (default)
- Right: CTP(30) = 4


```
dstp=dstp+CTParam(30)
    dstt=dstt+CTParam(30)
        if (bdist.gt. (nucrad(Ap)+nucrad(At)+2*CTParam(30)))
        bdist=nucrad(Ap)+nucrad(At)+2*CTParam(30)
        if (bdist.gt. (nucrad(Ap)+nucrad(At)+2*CTParam(30)))
        bdist=nucrad(Ap)+nucrad(At)+2*CTParam(30)
        CTParam(30)=1.5
```

```
subroutine boostnuc(i1,i2,pin,b,dst)
   implicit none
   include 'coms.f'
   include 'options.f'
   integer il, i2, i
   real*8 b,dst,ei,ti
   real*8 pin,beta,gamma
   do 1 i=i1,i2
   beta = pin/sqrt(pin**2+fmass(i)**2)
   gamma = 1.d0/sgrt(1.d0-beta**2)
Gallilei-Trafo in x-direction (impact parameter)
projectile hits at POSITIVE x
       rx(i) = rx(i) + b
distance between nuclei: projectile at NEGATIVE z for dst < 0
      if (CTOption (23).eq.0) then
        ti = r0(i)
        rz(i) = rz(i)/qamma+dst/qamma
       else
       rz(i) = (rz(i) + dst)
       end if
       Ei = p0(i)
      p0(i) = gamma*(p0(i) - beta*pz(i))
      pz(i) = qamma*(pz(i) - beta*Ei)
   continue
    return
    end
```

24	1	initialization mode
	0	hard sphere (used for EOS≠0)
	1	Woods-Saxon (used for CASCADE mode)
	2	Fast Woods-Saxon (used for CASCADE mode)

```
if (CTOption(24).eq.1) then
  R2 = nucrad(A) + 10.0
else
  R2 = nucrad(A)
endif
```