
UrQMD (Fortran) calls ROOT (C++)
Fan Si

Status
◦ Generally successful (but with some cases to be determined / developed)

◦ Define C++ functions, and let them called by Fortran at proper locations

◦ Define C++ extern struct to link Fortran quantities (commons)

◦ Location: ui:/ustcfs/HICUser/fsi/urqmd

◦ Original UrQMD: /ustcfs/HICUser/fsi/urqmd/urqmd

◦ Change: pythia6409.f −> pytahi6428.f (final pythia6), GNUmakefile updated

◦ Change: new gfortran option -std=legacy in mk/Linux.mk

◦ New Fortran & C++ codes: /ustcfs/HICUser/fsi/urqmd/curqmd

◦ c_*.f, curqmd.[cxx,h], GNUmakefile, run.sh

2

What to store (UrqmdDst)

◦ Entry for each time step of events (few)

◦ Additional branch

◦ b

◦ time: event level (instead of track level)

◦ Npart: Aproject + Atarget − #(pptype%100==0)

◦ Ntracks

◦ spin

◦ iso3_old1 & iso3_old2

3

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

What to store (UrqmdCollisionDst)

◦ Not created or stored if storeCollision = false

◦ Entry for each collision of events (many)

◦ Additional branch

◦ b

◦ Ntracks

◦ spin

◦ iso3_old1 & iso3_old2

4

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

What is new
◦ Can store spin, iso3_old

◦ Can store parent information (iType_old, iso3_old) during final output

◦ Can store f13 information @ each time step (original f13 only stores final)

◦ Can set quiet output to command screen

◦ Can skip empty event (Ncoll + Ndecays == 0)

◦ Can set random seed event-by-event

5

How to store parent information
◦ Integer (4 bytes): origin (origin definition)

◦ = ppType + 100*(# scatters) + 1000*(|iType_old1| + 1000*|iType_old2|)

◦ 0 <= ppType < 100, 0 <= |iType_old| < 1000

◦ No iso3_old or sign of iType_old

◦ ppType = origin%100

◦ # scatters = origin/100%10

6

How to store parent information
◦ Integer (4 bytes): origin (new definition)

◦ = ppType + 100*(# scatters) + 1000*((iso3_old1+3)+7*(t_iType_old1+100))
+ 1400000*((iso3_old2+3)+7*(t_iType_old2+100))

◦ 0 <= ppType < 100, 0 <= iso3_old+3 <= 6

◦ t_iType_old = iType_old; if(>=100) −=40; if(<=−100) +=40

◦ 0 <= t_iType_old+100 < 200

◦ origin < 1.96e9 (4-byte integer max ~ 2.1e9)

◦ !!!Also affect *.txt output

◦ ppType = origin%100

◦ # scatters = origin/100%10

◦ If ppType does not contain
scatters, can be stored 1-byte

7

How to set seed for random generator
◦ Random seed generator

◦ iseed is actual seed when used

◦ Changed after each use

◦ ranseed is seed of iseed

◦ 1. set ranseed < 0

◦ 2. if < 0, set ranseed by time

◦ if different from old

◦ 3. set iseed = −ranseed

◦ 4. modify iseed (extra if < 0)

8

If .not.fixedseed, it can reset seed

from time almost each event

If fixedseed, it use only one random

sequence (follows last event)

How to set seed for random generator
◦ Set seed for gRandom by random_device

◦ True random number if supported by compiler

◦ Set c_use_external_seed = true

◦ Set ranseed uniformly in
[-2147483648, 2147483647]

◦ Not finalized yet

◦ Set ranseed only positive?

◦ Add effect of time?

◦ Call ran2 to modify iseed

9

Other developments
◦ Parent particle Information in collision output

◦ In temporary quantities named t*

◦ No spin, or Nin, rho_b values

◦ Saved to my defined global quantity

◦ Extraction method is the same as other t*

◦ Now time step tree filled after final particle decays rather than after final time step

◦ Unstable particles’ decays after all time steps & before the end of event

◦ The same as origin output f14

◦ If CTOption(4)==1, initial information (t==0) is stored in tree

◦ The same as origin output f14

10

Other developments
◦ Pdgid (int) −> mass (float), iType (short), iso3 (char), charge (char)

◦ Strange masses of protons

◦ Different masses between UrQMD and PDG

◦ Some particles in UrQMD has no pdgid in ityp2pdg.f

◦ Such as iType = 12, 13, 15, 16

11

Wrong name?

What to be determined
◦ Npart: Aproject + Atarget − #(pptype%100==0)

◦ ppType = origin%100

◦ # scatters = origin/100%10

◦ Some particles only explore scatters, contribute to Npart?

12

Check

13

Check

14

Check

15

Npart calculation
◦ (bmax)max = nucrad(Ap)+nucrad(At)+2*CTParam(30)

◦ CTP(30): radius offset for initialization (1.5 default)

◦ 197Au+197Au: 15.82 = 6.41+6.41+1.5*2

16

Npart calculation
◦ pro: 197 79

◦ tar: 16 8

◦ sNN = 200 GeV

◦ b = 9 fm

◦ t = 0

◦ Center: pro (b/2, 0), tar (−b/2, 0)

◦ Radius: nucrad(A)+CTParam(30)

◦ But CTP(30) only contributes to (bmax)max

rather than nuclei initialization

◦ Npart = #((x−b/2)2+y2 < R(pro) && (x+b/2)+y2< R(tar)) at t = 0

17

◦ 197Au+197Au, 0 <= b < (bmax)max

◦ sNN = 200 GeV

◦ t = 100 fm/c

◦ Npart: old definition

◦ Npart0: new definition

◦ Left w/ CTP, right w/o CTP

18

Npart calculation

◦ 197Au+16O, 0 <= b < (bmax)max

◦ sNN = 200 GeV

◦ t = 100 fm/c

◦ Left: CTP(30) = 1.5 (default)

◦ Right: CTP(30) = 4

19

Npart calculation

Npart calculation

20

Npart calculation

21

Classes to store UrQMD data
◦ UrqmdDst

◦ TClonesArray*[4] containing the following classes

◦ initOutputTree: returns TTree for writing

◦ initInputChain: reads input file (*.list, *.root), and returns TChain for analyzing

◦ chain->GetEntry(i);

◦ urqmdDst-> …

◦ UrqmdEvent

◦ UrqmdTimestep

◦ UrqmdCollision

◦ UrqmdTrack

22

Classes to store UrQMD data
◦ UrqmdEvent

◦ id: event id

◦ 0 ~ 4294967295

◦ b: impact parameter

◦ 0 ~ 26.214

23

Classes to store UrQMD data
◦ UrqmdTimestep

◦ time: Float16_t (24 bit, truncated mantissa)

◦ nPart: old definition

◦ nColl = Elastic + Inelastic + Bloacked

◦ nElasticColl

◦ nInelasticColl

◦ nBloackedColl

◦ nDecays

◦ nHardRes

◦ nSoftRes

◦ nDecayRes

◦ nTracks

◦ startTrack: array index of 1st track at this timestep

24

Classes to store UrQMD data
◦ UrqmdCollision: ~ 20000 for 200 GeV, b = 0, t = 50 fm/c

◦ time

◦ Sqrts

◦ sigmaTotal

◦ sigmaPartial

◦ rhoB: −1 ~ 30+

◦ Type: < 100

◦ nIn: < 2?

◦ nOut

◦ nTracks = nIn + nOut

◦ startTrack

◦ An empty collision at index 0, so index = collision id

25

Classes to store UrQMD data
◦ UrqmdTrack: ~86000 for 200 GeV, b = 0, t = 50 fm/c (collision+1timestep)

◦ mType = (shifted_itype+100)+200((iso3+3)+7((charge+2)+5(spin+3)))

◦ |itype| >= 140, shifted_itype = 0 (PdgId+1000 used for some c/b hadrons)

◦ |itype| >= 100, shifted_itype = itype−40*|itype|/itype

◦ iso3 = 2I3, −3 ~ 3

◦ charge, −2 ~ 2

◦ spin = 2s3?, −3 ~ 3

◦ m: 0 − 6.5535

◦ mOrigin

◦ parentCollisionType, itypeOld1,
iso3Old1, itypeOld2, iso3Old2

◦ rSigma: 0 − 1

◦ If mTimestep=mCollision=0

◦ √ ×

26

Other updates
◦ Random seed (Int_t) =

◦ (Int_t((gRandom->Rndm()-0.5)*0x100000000))^(Int_t(ULong64_t(gSystem-
>Now()))%0x10000)

◦ gRandom->Rndm(): −1 ~ 1, ULong64_t(gSystem->Now()): current time in milliseconds

◦ All input settings summarized together

◦ New input parameter: event ID offset

◦ Extended track information extracted for collision history

◦ GNUmakefile updated, rootcint compiler called

◦ ROOT IO functions required by UrqmdDst

◦ New Npart definition in UrqmdEvent?

◦ Define 1 or 2 switches for some infrequently used track information?

◦ Split UrqmdTrack to 2 or 3 classes

27

Result
◦ 10 events, 200 GeV, b = 0, t = 50 fm/c (collision+1timestep)

◦ 32 MB

◦ ~20000 collisions, ~86000 tracks

◦ Generally, 3~4 tracks per collision (decay 3, collision 4)

◦ If storeCollision is turned off, required space is much smaller

28

