## Measurement of branching fraction of $D_s^{+*} \rightarrow e^+ e^- D_s^+$

Yang Gao, Xiao-Dong Shi, Ying-Chao Xu, Cong Geng, Ying-Chun Zhu, Xiao-Rui Lyu, Hai-Ping Peng

## Outline

>Introduction ➢ Data Sample **ST** Selection >ST yields and efficiencies (@4180) >ST yields of  $D_s^+$ (@4180)  $\geq e^+e^-$  Selection ➢ Signal Efficiencies **≻**Signal Fitting >IO Check Summary and Next to do

- There are only two electromagnetic decays in  $D_{(s)}^*$ :
- > 2012, CLEO-c:  $\mathcal{B}(D_s^{+*} \to D_s^+ e^+ e^-) = (6.7^{+0.14}_{-0.12} \pm 0.09) \times 10^{-3}$
- > 2021, BESIII :  $\mathcal{B}(D^{*0} \to D^0 e^+ e^-) = (3.91 \pm 0.27 \pm 0.17 \pm 0.10) \times 10^{-3}$
- Studying  $D_s^{+*} \rightarrow D_s^+ e^+ e^-$  with improved precision can provide more information about the EM interaction and the distribution of matter of  $D_s^{+*}$ .
- At 4.180 GeV, the data of BESIII are 5 times larger than CLEO-c, and can study the branching fraction of  $D_s^{+*} \rightarrow D_s^+ e^+ e^-$  with improved precision.
- Consider more signal events, we can also try to extract the form factor of  $D_s^{+*}$  firstly.

### **Data Sample**

- BOSS 703-1
- Data samples: 4180 (3189.0 pb<sup>-1</sup>)

| Tag Modes                                                                                                                    |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| $D_s^+ \to K_S^0 K^+$                                                                                                        |  |  |  |  |  |
| $D_s^+ \to K^+ K^- \pi^+$                                                                                                    |  |  |  |  |  |
| $D_s^+ \to K_S^0 K^+ \pi^0$                                                                                                  |  |  |  |  |  |
| $D_s^+ \to K^+ K^- \pi^+ \pi^0$                                                                                              |  |  |  |  |  |
| $D_s^+ \to K_s^0 K^- \pi^+ \pi^+$                                                                                            |  |  |  |  |  |
| $D_s^+ \to \pi^+ \pi^- \pi^+$                                                                                                |  |  |  |  |  |
| $D_s^+ \to \pi^+ \eta$                                                                                                       |  |  |  |  |  |
| $D_s^+ \to \pi^+ \pi^0 \eta$                                                                                                 |  |  |  |  |  |
| $D_{\scriptscriptstyle S}^+  ightarrow \pi^+ \eta^\prime$ , $\eta^\prime  ightarrow \pi^+ \pi^- \eta$                        |  |  |  |  |  |
| $D_{s}^{+} \rightarrow \pi^{+}\eta^{\prime}, \eta^{\prime} \rightarrow \gamma \rho^{0}, \rho^{0} \rightarrow \pi^{+}\pi^{-}$ |  |  |  |  |  |
| $D_s^+ \to K^+ \pi^- \pi^+$                                                                                                  |  |  |  |  |  |

#### • Inclusive MC

#### Table 2: Components and Cross Section

|                        | 4180               | 4190    | 4200    | 4210    | 4220    | 4230    |
|------------------------|--------------------|---------|---------|---------|---------|---------|
| Components             | Cross section (pb) |         |         |         |         |         |
| $D^0 ar D^0$           | 179                | 159     | 148     | 139     | 133     | 130     |
| $D^+D^-$               | 197                | 197     | 196     | 195     | 193     | 192     |
| $D^{*0} ar{D}^0$       | 1211               | 1187    | 1175    | 1159    | 1144    | 1133    |
| $D^{*+}D^-$            | 1296               | 1270    | 1257    | 1241    | 1225    | 1212    |
| $D^{*0}ar{D}^{*0}$     | 2173               | 2112    | 1855    | 1491    | 1096    | 879     |
| $D^{*+}D^{*-}$         | 2145               | 2085    | 1831    | 1472    | 1082    | 868     |
| $D_s^+ D_s^-$          | 34                 | 42.7    | 38.5    | 32.3    | 22.4    | 18.4    |
| $D_s^{*+}D_s^-$        | 961                | 925     | 921     | 853     | 750     | 629     |
| $D_{s}^{*+}D_{s}^{*-}$ | -                  | -       | -       | -       | -       | 22      |
| $DD^*\pi^+$            | 383                | 395     | 406     | 415     | 421     | 427     |
| $DD^*\pi^0$            | 192                | 198     | 204     | 208     | 211     | 214     |
| $DD\pi^+$              | 50                 | 53      | 55      | 56      | 58      | 57      |
| $DD\pi^0$              | 25                 | 27      | 27      | 28      | 29      | 29      |
| Components             | Cross section (nb) |         |         |         |         |         |
| qar q                  | 13.8               | 13.7    | 13.6    | 13.6    | 13.5    | 13.5    |
| $\gamma J/\psi$        | 0.40               | 0.39    | 0.39    | 0.38    | 0.37    | 0.37    |
| $\gamma\psi(2S)$       | 0.42               | 0.40    | 0.39    | 0.38    | 0.37    | 0.37    |
| $\gamma\psi(3770)$     | 0.06               | 0.06    | 0.06    | 0.06    | 0.06    | 0.06    |
| ττ                     | 3.45               | 3.45    | 3.46    | 3.46    | 3.46    | 3.47    |
| $\mu\mu$               | 5.24               | 5.22    | 5.19    | 5.16    | 5.14    | 5.13    |
| ee                     | 423.99             | 422.55  | 420.47  | 418.43  | 416.61  | 415.20  |
| $\gamma\gamma$         | 1.7                | 1.7     | 1.7     | 1.7     | 1.5     | 1.5     |
| HCT                    | 0.10178            | 0.12331 | 0.14525 | 0.16555 | 0.18486 | 0.19660 |

### **Data Sample**

• Signal MC:

The sample is produced by a DIY generator.

- → I,  $e^+e^- \rightarrow D_s^*D_s + c.c.$  is generated by ConExc model in the BesEvtGen incorporating both radiative correction and vacuum polarization, the corresponding angular distribution is  $1 + cos^2 \theta$ .
- ► II,  $D_s^{\pm *} \rightarrow D_s^{\pm} \gamma^* \rightarrow D_s^{\pm} e^+ e^-$  is modelled (arXiv:2111.04932v2) with

$$\frac{d\Gamma}{dq^2 d\cos\theta_1^*} \sim C \frac{|f(q^2)|^2}{q^2} (1 - \frac{4m_l^2}{q^2})^{1/2} [(m_{D_s^{*\pm}}^2 - m_{D_s^{\pm}}^2 + q^2)^2 - 4m_{D_s^{*\pm}}^2 q^2]^{\frac{3}{2}} \times [(1 + \frac{4m_l^2}{q^2}) + (1 - \frac{4m_l^2}{q^2})\cos^2\theta_1^*]$$

C contains all the constants,  $q^2$  is transfer momentum squre,  $\theta^*$  is the polar angle of electron in  $\gamma^*$  rest frame,  $m_{D_s^{\pm *}}$ ,  $m_{D_s^{\pm}}$  and  $m_l$  are the invariant mass of  $D_s^{\pm *}$ ,  $D_s^{\pm}$  and electron.

> III, One of  $D_s^{\pm}$  decay into ST mode according to the PWA results from Prof. Dong and another  $D_s^{\pm}$  decay inclusively.

## **Data Sample**

$$\mathcal{B}_{s} = \frac{2 \times \sum_{i} N(DT)_{i}^{\pm,dau/bac}}{\sum_{i} N(ST)_{i}^{\pm} \times \epsilon(DT)_{i}^{\pm,dau/bac}/\epsilon(ST)_{i}^{\pm}}$$

$$\sum_{i} N(DT)_{i}^{\pm,dau/bac} = \frac{\sum_{i} N(ST)_{i}^{\pm} \times \mathcal{B}_{s} \times \epsilon(DT)_{i}^{\pm,dau/bac}/\epsilon(ST)_{i}^{\pm}}{2}$$

## **ST Selections**

#### DTAG Package: DTagAlg-00-01-09

**Good tracks:** 

•  $V_{xy} = \sqrt{V_x^2 + V_y^2} < 1.0 \text{ cm}, |V_z| < 10.0 \text{ cm}, |cos\theta| < 0.93$ 

#### PID:

- Use dE/dx in MDC and time-of-flight in TOF.
- Prob(K) > 0 and  $Prob(K) > Prob(\pi)$  for K.
- $Prob(\pi) > 0$  and  $Prob(\pi) > Prob(K)$  for  $\pi$ .

#### Good photons:

- The showers time is required to be within 700 ns of the event start time to suppress the electronic noise.
- $|\cos\theta| < 0.8$  and  $E_{min} > 25 \text{MeV}$ .
- $0.86 < |\cos\theta| < 0.92$  and  $E_{min} > 50$  MeV.
- 10° isolation from any charged tracks.

#### $\pi^0$ Selection:

Reconstructed through  $\pi^0 \rightarrow \gamma \gamma$  with Pi0EtaToGGRecAlg Package.

•  $\gamma$  satisfying the requirements of photon selection.

Perform a constrained fit on the photon pairs to the nominal  $\pi^0$  mass:

- The unconstrained invariant mass for  $\pi^0$ : 0.115 <  $M_{\gamma\gamma}$  < 0.150 GeV/ $c^2$
- Mass fit:  $\chi^2_{1C} < 30$



## **ST Selections**

#### $\eta$ Selection:

Reconstructed through  $\eta \rightarrow \gamma \gamma$  with Pi0EtaToGGRecAlg Package.

•  $\gamma$  satisfying the requirements of photon selection. Perform a constrained fit on the photon pairs to the nominal  $\eta$  mass:

- The unconstrained invariant mass for  $\eta$  : 490 <  $M_{\gamma\gamma}$  < 580 MeV/ $c^2$ .
- Mass fit:  $\chi^2_{1C} < 30$

#### $\eta'$ Selection:

Reconstructed through  $\eta' \to \pi^+\pi^-\eta$  and  $\eta' \to \rho^0\gamma$ . For  $\eta' \to \pi^+\pi^-\eta$ : we require:

•  $943 < M_{\pi^+\pi^-\eta} < 973 \text{ MeV}/c^2$ 

For  $\eta' \rightarrow \rho^0 \gamma$ : we require:

- $946 < M_{\pi^+\pi^-\eta} < 970 \text{ MeV}/c^2$
- $570 < M_{\pi^+\pi^-} < 970 \text{ MeV}/c^2$

#### $K_S^0$ Selection:

Reconstructed with VeeVertexAlg Package.

•  $|V_z| < 20.0 \text{ cm}, |cos\theta| < 0.93.$ 

A constrained vertex fit is performed:

- $\chi^2_{1VF} < 100$
- $487 < M_{\pi^+\pi^-} < 511 \text{ MeV}/c^2$

A second constrained vertex fit is performed:

- $\chi^2_{2VF} < 100$
- $L/\sigma_L > 2$

L is the distance between the vertex and the IP and  $\sigma_L$  is the uncertainty of L.

- $\pi^{\pm 0}$  from  $D_s^{\pm}$  directly require:  $P_{\pi^{\pm 0}} > 100 \text{ MeV/c}$ For  $D_s^+ \to \pi^+ \pi^+ \pi^-$  and  $D_s^+ \to K^+ \pi^+ \pi^-$ :
- Veto events with  $M_{\pi^+\pi^-} \in (0.468, 0.528) \text{ GeV}/c^2$

#### **ST Selections**



| Tag Modes                                                                                               | Mass Window (GeV) |
|---------------------------------------------------------------------------------------------------------|-------------------|
| $D_S^+ \to K_S^0 K^+$                                                                                   | (1.948, 1.991)    |
| $D_s^+ \to K^+ K^- \pi^+$                                                                               | (1.950, 1.986)    |
| $D_s^+ \to K_s^0 K^+ \pi^0$                                                                             | (1.946, 1.987)    |
| $D_s^+ \to K^+ K^- \pi^+ \pi^0$                                                                         | (1.947, 1.982)    |
| $D_s^+ \to K_s^0 K^- \pi^+ \pi^+$                                                                       | (1.953, 1.983)    |
| $D_s^+ \to \pi^+ \pi^- \pi^+$                                                                           | (1.952, 1.984)    |
| $D_s^+ \to \pi^+ \eta$                                                                                  | (1.930, 2.000)    |
| $D_s^+ \to \pi^+ \pi^0 \eta$                                                                            | (1.920, 2.000)    |
| $D_{s}^{+}  ightarrow \pi^{+} \eta^{\prime}$ , $\eta^{\prime}  ightarrow \pi^{+} \pi^{-} \eta$          | (1.938, 1.997)    |
| $D_s^+  ightarrow \pi^+ \eta^\prime, \eta^\prime  ightarrow \gamma  ho^0,  ho^0  ightarrow \pi^+ \pi^-$ | (1.938, 2.006)    |
| $D_s^+ \to K^+ \pi^- \pi^+$                                                                             | (1.953, 1.983)    |

## ST yields and efficiencies (@4180)

| Tag Modes                                                                                                                       | Yields tag $D_s^+$ | Eff tag $D_s^+(\%)$ | Yields tag $D_s^-$ | Eff tag $D_s^-(\%)$ |
|---------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|--------------------|---------------------|
| $D_s^+ \to K_s^0 K^+$                                                                                                           | $15221 \pm 186$    | 47.79               | $15637 \pm 192$    | 47.26               |
| $D_s^+ \to K^+ K^- \pi^+$                                                                                                       | $68315 \pm 436$    | 40.71               | $69052 \pm 442$    | 41.04               |
| $D_s^+ \to K_s^0 K^+ \pi^0$                                                                                                     | $4881 \pm 278$     | 14.71               | $4790 \pm 264$     | 14.51               |
| $D_s^+ \to K^+ K^- \pi^+ \pi^0$                                                                                                 | $18558 \pm 557$    | 11.04               | $20011 \pm 596$    | 10.79               |
| $D_s^+ \to K_s^0 K^- \pi^+ \pi^+$                                                                                               | $7110 \pm 160$     | 19.91               | $7158 \pm 163$     | 20.48               |
| $D_s^+ \to \pi^+ \pi^- \pi^+$                                                                                                   | $18142\pm678$      | 54.34               | $18569 \pm 629$    | 55.26               |
| $D_s^+ 	o \pi^+ \eta$                                                                                                           | 8922 ± 313         | 45.64               | $9263 \pm 318$     | 45.17               |
| $D_s^+ \to \pi^+ \pi^0 \eta$                                                                                                    | $20919 \pm 1093$   | 18.35               | $21213 \pm 1039$   | 18.90               |
| $D_{s}^{+} ightarrow\pi^{+}\eta^{\prime}$ , $\eta^{\prime} ightarrow\pi^{+}\pi^{-}\eta$                                         | $4701 \pm 130$     | 23.49               | $4521 \pm 120$     | 23.72               |
| $D_{s}^{+}  ightarrow \pi^{+} \eta^{\prime}$ , $\eta^{\prime}  ightarrow \gamma  ho^{0}$ , $ ho^{0}  ightarrow \pi^{+} \pi^{-}$ | $10998 \pm 427$    | 29.32               | $11141 \pm 413$    | 29.65               |
| $D_s^+ \to K^+ \pi^- \pi^+$                                                                                                     | $8332 \pm 467$     | 46.65               | $8124 \pm 537$     | 46.09               |
| Sum                                                                                                                             | $186100 \pm 1675$  |                     | $189478 \pm 1654$  |                     |

## ST yields of $D_s^+(@4180)$











Shape⊗Gauss+ Chebyshev

## ST yields of $D_s^-(@4180)$





2

2.02

ATTAC LEAD IN LA

2.02

2

2

2.02



Shape⊗Gauss+ Chebyshev

### $e^+e^-$ Selections

- $P_{e^+} < 0.2 \text{ GeV/c}$  and  $P_{e^-} < 0.2 \text{ GeV/c}$ .
- PID with dE/dx in MDC: Prob(e) > 0,  $Prob(e) > Prob(\pi)$



### $e^+e^-$ Selections

For  $cos\theta_{e^+e^-} > 0.92$ :

• Use GammaConv Package,  $R_{XY} = \sqrt{V_x^2 + V_y^2} < 2 \text{ cm}$ 

For  $cos \theta_{e^+e^-} < 0.92$ :

• Use Vertex Fitting Package, 
$$R_{XY} = \sqrt{V_x^2 + V_y^2} < 2 \text{ cm}$$





### $e^+e^-$ Selections



15

## **Signal Efficiencies**

| Tag Modes                                                                                      | $\epsilon^{+,dau}_{i,j}(\%)$ | $\epsilon^{-,bac}_{i,j}(\%)$ | $\epsilon^{-,dau}_{i,j}(\%)$ | $\epsilon^{+,bac}_{i,j}(\%)$ |
|------------------------------------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| $D_s^+ \to K_s^0 K^+$                                                                          | 3.90                         | 4.14                         | 3.91                         | 4.04                         |
| $D_s^+ \to K^+ K^- \pi^+$                                                                      | 3.28                         | 3.52                         | 3.30                         | 3.54                         |
| $D_s^+ \to K_s^0 K^+ \pi^0$                                                                    | 1.25                         | 1.49                         | 1.24                         | 1.56                         |
| $D_s^+ \to K^+ K^- \pi^+ \pi^0$                                                                | 0.78                         | 1.06                         | 0.81                         | 1.07                         |
| $D_s^+ \to K_s^0 K^- \pi^+ \pi^+$                                                              | 1.42                         | 1.63                         | 1.45                         | 1.63                         |
| $D_s^+ \to \pi^+ \pi^- \pi^+$                                                                  | 4.56                         | 4.98                         | 4.46                         | 4.97                         |
| $D_s^+ \to \pi^+ \eta$                                                                         | 4.19                         | 4.40                         | 4.12                         | 4.42                         |
| $D_s^+ \to \pi^+ \pi^0 \eta$                                                                   | 1.83                         | 2.10                         | 1.83                         | 2.19                         |
| $D_{s}^{+}  ightarrow \pi^{+} \eta^{\prime}$ , $\eta^{\prime}  ightarrow \pi^{+} \pi^{-} \eta$ | 1.81                         | 1.98                         | 1.77                         | 1.97                         |
| $D_s^+ \to \pi^+ \eta', \eta' \to \gamma \rho^0, \rho^0 \to \pi^+ \pi^-$                       | 2.64                         | 2.70                         | 2.65                         | 2.79                         |
| $D_s^+ \to K^+ \pi^- \pi^+$                                                                    | 3.88                         | 4.24                         | 3.93                         | 4.31                         |

✓ The momentum of  $e^+$  and  $e^-$  are very low, so the tracking efficiencies are very low, it's the main reason that the signal efficiencies are very limited.









Background from inclusive MC

$$\begin{array}{l} PDF_{i\,D_{s}^{dau}} = N_{iD_{s}^{dau}}PDF_{i\,D_{s}^{dau}} + N_{bkg\,i\,D_{s}^{bac}}PDF_{i\,bac} + N_{bkg\,i\,D_{s}^{dau}}PDF_{i\,bac} + N_{bkg\,i\,D_{s}^{bac}}PDF_{i\,bkg\,i\,D_{s}^{bac}} \\ PDF_{i\,D_{s}^{bac}} = N_{iD_{s}^{bac}}PDF_{i\,D_{s}^{bac}} + N_{bkg\,i\,D_{s}^{dau}}PDF_{i\,dau} + N_{bkg\,i\,D_{s}^{bac}}PDF_{i\,BKGD_{s}^{bac}} \\ N_{bkg\,i\,D_{s}^{bac}} = Scale_{dau} \times N_{iD_{s}^{bac}} \\ N_{bkg\,i\,D_{s}^{dau}} = Scale_{bac} \times N_{iD_{s}^{dau}} \\ PDF_{i\,D_{s}^{dau}} = Shape_{i\,D_{s}^{dau}}\otimes Gauss(\mu_{1},\sigma_{1}) \\ PDF_{i\,D_{s}^{bac}} = Shape_{i\,D_{s}^{bac}}\otimes Gauss(\mu_{2},\sigma_{2}) \end{array}$$

| Component 1                                                                                                       | Component 3                                | Component 5                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| $D_s^+ \to K^+ K^- \pi^+$                                                                                         | $D_s^+ \to K_s^0 K^- \pi^+ \pi^+$          | $D_s^+ \to \pi^+ \pi^- \pi^+$                                                                                                     |
| Component 2                                                                                                       | $D_s^+ \to \pi^+ \eta$                     | $D_s^+ 	o \pi^+ \pi^0 \eta$                                                                                                       |
|                                                                                                                   |                                            |                                                                                                                                   |
| $D_S^+ \to K_S^0 K^+$                                                                                             | Component 4                                | $D_{s}^{+}  ightarrow \pi^{+} \eta^{\prime}$ , $\eta^{\prime}  ightarrow \gamma  ho^{0}$ , $ ho^{0}  ightarrow \pi^{+} \pi^{-}$   |
| $D_{S}^{+} \rightarrow K_{S}^{0}K^{+}$ $D_{S}^{+} \rightarrow \pi^{+}\eta', \eta' \rightarrow \pi^{+}\pi^{-}\eta$ | Component 4<br>$D_s^+ \to K_S^0 K^+ \pi^0$ | $\begin{split} D_s^+ &\to \pi^+ \eta', \eta' \to \gamma \rho^0, \rho^0 \to \pi^+ \pi^- \\ D_s^+ &\to K^+ \pi^- \pi^+ \end{split}$ |





### **IO Check**





|       | Result                    |  |  |
|-------|---------------------------|--|--|
| mean  | $-0.1555 \pm 0.1666$      |  |  |
| sigma | ${\bf 1.0401 \pm 0.1212}$ |  |  |

## Summary and Next to do

- ✓ We have a preliminary result about  $\mathcal{B}(D_s^{+*} \rightarrow D_s^+ e^+ e^-) = (8.89 \pm 1.15) \times 10^{-3}$  using data at 4.180 GeV.
- $\checkmark$  IO Check of branching fraction has been finished.

|           | Results                                           |           | Statistical Uncertainty(%) |
|-----------|---------------------------------------------------|-----------|----------------------------|
| This work | $(8.89 \pm 1.15) 	imes 10^{-3}$                   | This work | 12.94                      |
| CLEO-c    | $\left(6.7^{+1.4}_{-1.2}\pm0.9 ight)	imes10^{-3}$ | CLEO-c    | 18~21                      |

- $\succ$  Next to do:
- ➤ Using 2D fitting to get a correct statistical uncertainty (almost done).
- $\succ$  Try the method to extract the form factor (almost done).
- ➤ Add more data at 4.190 4.200, 4.210, 4.220, 4.230.
- Systematic uncertainty

### **Thanks!**