

Beam Energy Scan: Physics Overview

Daniel Cebra

University of California, Davis

Workshop on iTPC Upgrade Shandong University, Jinan, China

Slide 1 of 27

Creating Little Bangs in the Laboratory

STAR

Herold, Nahrgang et al, Nucl.Phys. A925 (2014) 14-24

What do Heavy Ion Collisions Tell us about the Big Bang?

03/December/2016

Workshop on iTPC Upgrade Shandong University, Jinan, China

Workshop on iTPC Upgrade Shandong University, Jinan, China

Slide 4 of 27

Exploring the Phase Diagram of QCD Matter

	Wha	at was known prior to the RHIC Be	eam Energy Scan Program?				Chemical	Pred.
	1)	High Energy Heavy-ion Collisions	→ partonic matter			Energy	Potential	Temp.
	2)	Highest energies → transition is	a cross over			(GeV)	μ_{B}	(MeV)
	3)	At increased $\mu_{\rm B}$, there might be a	a first-order phase transition		LHC	2760.0	2	166.0
	4)	4) And if so, there should be a critical point				200.0	24	165.9
			ark-Gluon Plasma		RHIC	130.0	36	165.8
		ဖြစ္တိ 📮 62.4 GeV 🏹 🛛 Qua			RHIC	62.4	73	165.3
	300	월 불 🛛 💑 39 GeV 🍾	BES program searches for:		RHIC	39.0	112	164.2
]" <i> 1</i> ", 🥄	• Turn-off of OGP signatu	ires	RHIC	27.0	156	<u>162.6</u>
		🔰 💋 27 GeV 💈	• First order phase transi	tion	RHIC	19.6	206	160.0
5		🍎 19.6 GeV 🍇	Critical point		SPS	17.3	229	158.6
Me		14.5 GeV 😵			RHIC	14.5	262	<u>156.2</u>
lre (200	11.5 GeV 🔌	2010: 62.4, 39, 11.5,	. 7.7	SPS	12.4	299	153.1
ratu		📜 🚺 🖌 🖉 🝎 7.7 GeV 🍢	2011 . 19.6. 27 GeV		RHIC	11.5	316	<u>151.6</u>
be			2011. 19.0, 27 Gev		SPS	8.8	383	144.4
Ten		Mical Poly	2014: 14.5 GeV		RHIC	7.7	422	139.6
	400				SPS	7.7	422	139.6
	100	Ship Ship	Color Super		SPS	6.4	476	131.7
		Minetic Freeze-out	conductor		AGS	4.7	573	114.6
		Hadronic Gas	944 · · · · · · · · · · · · · · · · · ·		AGS	4.3	602	108.8
			in the second seco		AGS	3.8	638	100.6
	0				AGS	3.3	686	88.9
		0 250 500 750	1000		AGS	2.7	752	70.4
		Baryon Chemical Potenti	al μ _B (MeV)		SIS	2.3	799	55.8

Daniel Cebra 03/December/2016

Workshop on iTPC Upgrade Shandong University, Jinan, China

Slide 5 of 27

How Collision Energy Changes μ_{B}

- Determines whether a parton images:
 - A. The whole nucleus
 - B. Individual nucleons
 - C. Individual partons

At lower energy, nucleons are opaque, and the valence quarks are stopped in the fireball. Excess quarks \rightarrow higher μ_B At higher energy, nucleons are transparent, and the valence quarks are pass through and exit the fireball. Equal quarks and anti-quarks \rightarrow lower μ_B

What Was Learned in the Earlier Scans?

Wor

Shando

- Summary of AGS, SPS, and early RHIC Results
- Inclusive observables → onset of deconfinement at 7-8 GeV.
- The observables suggest a change in the nature of the system.
- More discriminating studies were needed to understand the nature of the phase transition and to search for critical behavior.
- It is best to study regions above and below the possible onset energy.

Daniel Cebra 03/December/2016

Setting the Scene

Daniel Cebra 03/December/2016

Workshop on iTPC Upgrade Shandong University, Jinan, China

Disappearance of QGP Signatures - R_{CP}

• R_{CP} for hadrons and for identified particles can provide a measure of partonic energy loss in the medium.

• Not sufficient reach to search for evidence of high p_T suppression below 19.6 GeV

Stopped Baryons
complicate inclusive R_{CP}
measurements

pQCD calculations
show high p_T
suppression

• Hybrid calculations describe the low $\ensuremath{p_{\text{T}}}$ behavior

Daniel Cebra 03/December/2016

<u>'AR</u>

Chiral Phase Transition

03/December/2016

Workshop on iTPC Upgrade Shandong University, Jinan, China

Slide 10 of 27

Search for 1^{st} Order Phase Transition – v_1

Daniel Cebra 03/December/2016

Workshop on iTPC Upgrade Shandong University, Jinan, China

Slide 11 of 27

Search for the Critical Point – $\kappa\sigma^2$

Daniel Cebra 03/December/2016

Workshop on iTPC Upgrade Shandong University, Jinan, China

Slide 12 of 27

BES Phase I – What have We Learned

- \bullet The BES at RHIC spans a range of μ_{B} that could contain features of the QCD phase diagram.
- Signatures consistent with a parton dominated regime either disappear, lose significance, or lose sufficient reach at the low energy region of the scan.
- Dilepton mass spectra show a broadening consistent with models including hadron gas and quark-gluon plasma components
- •There are indicators pointing towards a softening of the equation of state which can be interpreted as evidence for a first order phase transition.
- The higher moment fluctuation is sensitive to critical phenomena, but these analyses place stringent demands on the statistics.

Open Questions

Studying the Phase Diagram of QCD Matter at RHIC

A STAR white paper summarizing the current understanding and describing future plans

01 June 2014

Beam Energy Scan II (2019-2020)

Select the most important energy range → 5 to 20 GeV

Improve significance→Long runs, higher luminosity

Refine the signals→ Detector improvements

Daniel Cebra 03/December/2016 11.5 Gel

Workshop on iTPC Upgrade Shandong University, Jinan, China

Slide 14 of 27

03/December/2016

Workshop on iTPC Upgrade Shandong University, Jinan, China

Slide 15 of 27

03/December/2016

Shandong University, Jinan, China

Slide 16 of 27

Reduction in Errors with Improved Statistics

03/December/2016

Workshop on iTPC Upgrade Shandong University, Jinan, China

Slide 17 of 27

The STAR Upgrades and the FXT program

inner TPC

upgrade Endcap TOF / Event Plane Detector

iTPC Upgrade:

- Rebuilds the inner sectors of the TPC
- Continuous Coverage
- Improves dE/dx
- Extends η coverage to
- 1.5 (2.2 for FXT)
- Lowers p_T cut-in from 125 MeV/c to 60 MeV/c
- Ready in 2019

EndCap TOF Upgrade:

- Rapidity coverage is critical
- PID at forward rapidity
- Allows higher energy range

of FXT program

- CBM/FAIR
- Ready 2019

EPD Upgrade:

- Improves trigger
- Reduces background

• Allows a better and independent reaction plane measurement critical to BES physics

• Ready 2018

Daniel Cebra 03/December/2016

Workshop Common Copyright Shandong University, Jinan, China

Daniel Cebra 03/December/2016

Workshop on iTPC Upgrade Shandong University, Jinan, China

Slide 21 of 27

Slide 24 of 27

FXT Program

Collider Energy	Fixed- Target Energy	Single beam AGeV	Center- of-mass Rapidity	μ _в (MeV)
62.4	7.7	30.3	2.10	420
39	6.2	18.6	1.87	487
27	5.2	12.6	1.68	541
19.6	4.5	8.9	1.52	589
14.5	3.9	6.3	1.37	633
11.5	3.5	4.8	1.25	666
9.1	3.2	3.6	1.13	699
7.7	3.0	2.9	1.05	721
5.0	2.5	1.6	0.82	774

• Data rate is DAQ limited

• Would need 100 Million Events at each energy to make the sensitivity of BES-II

Roughly one to two days per energy

Slide 23 of 27

Daniel Cebra 03/December/2016

Workshop on iTPC Upgrade Shandong University, Jinan, China

Fixed-Target Program 3.0 to 7.7 Gever

The Fixed-Target Program will extend the reach of the RHIC BES to higher $\mu_{\rm B}$.

Goals:

1) Search for evidence of the first entrance into the mixed phase

 Control measurements for BES collider program searches for Onset of Deconfinement

3) Control measurements for Critical Point searches

Baryon Chemical Potential μ_B

Daniel Cebra 03/December/2016

Sampling of Preliminary FXT Results

Daniel Cebra 03/December/2016

Workshop on iTPC Upgrade Shandong University, Jinan, China

Slide 25 of 27

Beam Energy Scan Theory (BEST) Collaboration

"Fixed-term, multi-institution collaboration established to investigate a specific topic in nuclear physics of special interest to the community"

Workshop on iTPC Upgrade Shandong University, Jinan, China

Conclusions

- Results from Beam Energy Scan programs at AGS, SPS, and RHIC support a model of QCD matter that has both a hadronic and partonics state.
- Key measurements need more data (v_2 of ϕ , dileptons)
- Detector upgrades extend coverage \rightarrow physics reach ($\kappa\sigma^2$)
- Fixed-target program will extend energy (μ_B) reach of BES program \rightarrow coverage of upgrade detectors needed

Extras

Daniel Cebra 03/December/2016

Workshop on iTPC Upgrade Shandong University, Jinan, China

Slide 28 of 27

Target Design 2014 and 2015

Target design:

Gold foil 1 mm Thick ~1 cm High ~4 cm Wide 210 cm from IR

Daniel Cebra 03/December/2016

Workshop on iTPC Upgrade Shandong University, Jinan, China

Slide 29 of 27

Run 14 and 15 Setup

Daniel Cebra 03/December/2016

Workshop on iTPC Upgrade Shandong University, Jinan, China

Slide 30 of 27

What do the iTPC and eTOF do for Fixed Target?

Daniel Cebra 03/December/2016

Workshop on iTPC Upgrade Shandong University, Jinan, China

Slide 32 of 27

Acceptance

Workshop on iTPC Upgrade Shandong University, Jinan, China

Slide 33 of 27

Collision	Single	Fixed	Single	Center of		
Energy	Beam	Target	Beam	Mass	Chemical	Events
(GeV)	Energy	Root s	Rapidity	Rapidity	Potential μ_B	(Millions)
200	100	13.713	5.369	2.685	0.276	NA
130	65	11.083	4.938	2.469	0.325	NA
62.4	31.2	7.737	4.204	2.102	0.420	100
39	19.5	6.170	3.734	1.867	0.487	100
27	13.5	5.185	3.366	1.683	0.541	100
19.6	9.8	4.468	3.042	1.521	0.589	100
14.5	7.25	3.904	2.741	1.370	0.633	100
11.5	5.75	3.528	2.507	1.253	0.666	100
9.1	4.55	3.196	2.269	1.134	0.699	100
7.7	3.85	2.985	2.097	1.049	0.721	100
5.0	2.50	2.320	1.644	0.822	0.774	100

Run 14 and 15 Setup

Daniel Cebra 03/December/2016

Workshop on iTPC Upgrade Shandong University, Jinan, China

Slide 35 of 27

Comparison of Facilities

Facilty	RHIC BESII	SPS	NICA	SIS-100 SIS-300	J-PARC HI	
Exp.:	STAR	NA61	MPD	CBM	JHITS	
	+FXT		+ BM@N			
Start:	2019-20	2019-20 2009		2022	2025	
	2018		2017			
Energy:	7.7–19.6	4.9-17.3	2.7 - 11	2.7-8.2	2.0-6.2 100 MHZ	
√s _{NN} (GeV)	2.5-7.7		2.0-3.5			
Rate:	100 HZ	100 HZ	<10 kHz	<10 MHZ		
At 8 GeV	2000 Hz					
Physics:	CP&OD	CP&OD	OD&DHM	OD&DHM	OD&DHM	
	Collider	Fixed Target	Collider	Fixed Target	Fixed Target	
	Fixed larget	Lighter ion	Fixed larget	CP = Critical Point		
		collisions		DD = Onset of Deconfinement		
Daniel Cebra	Workshop on iTPC Upgrade					

Shandong University, Jinan, China

BES Phase II is planned for two 24 cryo-week runs in 2019 and 2020

√S _{NN} (GeV)	7.7	9.1	11.5	14.5	19.6
μ_{B} (MeV)	420	370	315	250	205
BES I (MEvts)	4.3		11.7	24	36
Rate(MEvts/day)	0.25		1.7	2.4	4.5
BES I <i>L</i> (1×10 ²⁵ /cm ² sec)	0.13		1.5	2.1	4.0
BES II (MEvts)	100	160	230	300	400
Improvement (X)	4	4	4	3	3
Beam Time (weeks)	12	9.5	5.0	5.5	4.5

Yields of Hadrons -> Mapping the Phase Boundary

STAR

Acceptance of π , K, p is good to midrapidity at all FXT energies. Acceptance for weak decay parents should be good as well.

Measurements can be extrapolated to 4π

Will be able to extend the low energy limits of measurements of most strange hadrons

 4π strange hadron yields are needed for chemical equilibrium models to determine T and μ_{B}

Daniel Cebra 03/December/2016 Hypernuclei

Previously only measured at two energies

Dynamic range will exclude searches for doubly strange hypernuclei

Daniel Cebra 03/December/2016

Workshop on iTPC Upgrade Shandong University, Jinan, China

Slide 39 of 27