Total charm cross-section in Au+Au 200GeV from STAR

Xinyue Ju

12/16/2022

Charm hardon measurement at Au+Au 200GeV

Ground state charm hadrons production(with HFT) at Au+Au 200GeV from STAR:

- D0: run14 , published PhysRevC.99.034908 (2019)
- Lc: run14&run16, published Phys. Rev. Lett. 124, (2020) 172301
- Ds:run14&run16, published Phys. Rev. Lett. 127, (2021) 092301
- D±:run14&run16, <u>https://www.star.bnl.gov/protected/heavy/vanekjan/Dpm_web/Home.html</u>
- All primary Ground state charm hadrons are already published or in publish step. So we want to carry out a total charm production cross-section results in D± paper

Previous calculation by Xiaolong Chen https://drupal.star.bnl.gov/STAR/system/files/charmCrossSection_190627.pdf

D⁰ production cross-section:

Published D⁰ data cover whole p_T range (0 GeV/c to 10 GeV/c)

$$\frac{d\sigma}{dy}|_{y=0} = \int \frac{d^2N}{dydp_T} |_{y=0} dp_T * \frac{\sigma_{pp}}{N_{collision}}$$

 $\int \frac{d^2 N}{dy dp_T} |_{y=0} dp_T \text{ is calculated by sum all measured } dN/dy \text{ in each } p_T$ bin: $\int \frac{d^2 N}{dv dp_T} |_{y=0} dp_T = \sum_{p_T bin} \frac{dN_{measured}}{dy} |_{y=0}$

 $\sigma_{pp} = 42 \text{mb}$

 $N_{collision}$ taking from run14&16 centrality calculation

(the σ_{pp} and $N_{collision}$ value will give an 8% uncertainty on all charm hardon cross-section calculation)

https://www.star.bnl.gov/protected/heavy/xgn1992/Centrality/Run2014/

D⁰ production cross-section:

• For the uncertainty calculation, assuming the stat. err. in each pT bin are uncorrelated and sys. err. are fully correlated. The results shows in the table below:

Centrality:	$\frac{d\sigma}{dy} _{y=0} (\mu b)$	Stat. Err.	Sys. Err.
0-10%	38.1894	1.1948	2.1799
10-40%	39.0188	0.5715	1.1132
40-80%	36.6356	0.6765	1.4079
0-80%	39.4365	0.4584	5.3178

 $0.0 < p_T < 8.0 \text{ GeV/c}$

 Considering both statics and consistence with other charm hadron measurement, we choose 10-40% centrality results 39.0 ± 0.6 (stat.) ± 1.1 (sys.) to calculate the total charm cross-section

D⁰ production cross-section: Fit to different model

- Using different model functions to describe $D^0 p_T$ spectra in low pT range
- Function choosing:

Levy :
$$\frac{d^{2}N}{2\pi p_{T}dp_{T}dy} = \frac{1}{2\pi} \frac{dN}{dy} \frac{(n-1)(n-2)}{nT(nT+m_{0}(n-2))} \left(1 + \frac{\sqrt{p_{T}^{2} + m_{0}^{2}} - m_{0}}{nT}\right)^{-n}$$
Power-law:
$$\frac{d^{2}N}{2\pi p_{T}dp_{T}dy} = \frac{dN}{dy} \frac{4(n-1)(n-2)}{2\pi(n-3)^{2}(p_{T})^{2}} \left(1 + \frac{2p_{T}}{(p_{T})(n-3)}\right)^{-n}$$
Blast-wave:
$$\frac{dN}{p_{T}dp_{T}} = \frac{dN}{m_{T}dm_{T}} \propto \int_{0}^{R} r drm_{T}I_{0} \left(\frac{p_{T}\sinh\rho}{T_{kin}}\right) K_{1} \left(\frac{m_{T}\cosh\rho}{T_{kin}}\right)$$
Tsallis:
$$E\frac{d^{3}N}{dp^{3}} = gV \frac{m_{T}}{(2\pi)^{3}} \left[1 + (q-1)\frac{m_{T}}{T_{1}}\right]^{-q/(q-1)}$$
Boltzmann:
$$\frac{d^{2}N}{dp_{T}dy} \propto m_{T}\exp(-m_{T}/T)$$
exponential (pT,pT-Gaus,pT-trip):
$$\frac{dN}{p_{T}dp_{T}} = c_{p_{T}^{15}}\exp\left(-\frac{p_{T}^{15}}{T_{p_{T}^{1}}^{15}}\right), \frac{dN}{p_{T}dp_{T}} = c_{p_{T}^{2}}\exp\left(-\frac{p_{T}^{2}}{T_{p_{T}^{2}}^{2}}\right), \frac{dN}{p_{T}dp_{T}} = c_{p_{T}^{2}}\exp\left(-\frac{p_{T}^{2}}{T_{p_{T}^{2}}^{2}}\right)$$

D⁰ cross-section: Fit to different model

Number after function name means Integral cross-section in $p_{\tau}(0.0-10.0 \text{ GeV/c})$

Boltzmann, Exponential p_T -Gaus, Exponential p_T -triple are failed to describe data.

Levy , Blast-wave, Tsallis and Exponential p_T and Power-Law functions can fit to the low p_T spectra, but Power-Law function overestimate 0-1 GeV yields.

D_s cross-section: extrapolate from D_s/D^0 ratio

 D_s measurement for 10-40% cover p_T 1.0 to 8.0 GeV/c,

Using the same method as L_c to do the extrapolation down to 0 p_T :

$$\frac{dN(D_s)}{dp_T dy}(p_T) = \frac{dN(D^0)}{dp_T dy}(p_T) \times C_1 \frac{D_s}{D^0}(p_T)$$

 $\frac{dN(D^0)}{dp_T dy}$ (p_T) is getting from levy fitting of D⁰ 10-40% centrality data (p_T 0-10 GeV/c).

 $\frac{D_s}{D^0}$ (p_T) are getting from different model calculation

 $\rm C_1$ is a free parameter which allow the overall $\rm D_s/\rm D^0$ ratio could change

All model curves are using 10-40% results, expect for TAMU, which only have 0-20% centrality. All D_s/D^0 model are underestimated the 5.0-8.0 GeV data point

The final results are using the average between these four-model extrapolation (0-1 GeV) plus data (1-8.0 GeV). And the differences between models are quote as systemic errors.

Ds (10-40%) Total cross-section using this method is: **15.4 \pm 1.7 (stat.) \pm 3.6(sys.) 0.0 < p_T < 8.0 GeV/c**

D_s cross-section: extrapolate from p_T spectra

Number after function name means Integral cross-section in pT(0.0-1.0 GeV/c)

Boltzmann, Exponential p_T -Gaus, Exponential p_T -triple are failed to describe data. Power-Law overestimate low p_T cross-section.

The final results are using the average between Levy , Blast-wave, Tsallis and Exponential p_T . And the differences are quote as systemic errors.

Ds (10-40%) Total cross-section using this method is: 15.5 ± 1.7 (stat.) ± 3.1 (sys.)

The difference of the total cross-section between this and the previous method is very small

D^{\pm} cross-section: extrapolate from D^{\pm}/D^{0} ratio

D[±] measurement for 10-40% cover $p_T 0.5$ to 10.0 GeV/c,

Using the same method as L_c to do the extrapolation down to 0 p_T :

$$\frac{dN(D^{\pm})}{dp_{T}dy}(pT) = \frac{dN(D^{0})}{dp_{T}dy}(pT) \times C_{1} \frac{D^{\pm}}{D^{0}}(p_{T})$$

 $\frac{dN(D^0)}{dp_T dy}$ (pT) is getting from levy fitting of D⁰ 10-40% centrality data (p_T 0-10 GeV/c).

 $\frac{D^{\pm}}{D^{0}}(p_{T})$ are getting from different version of PYTHIA calculation

 $\rm C_1$ is a free parameter which allow the overall $\rm D^\pm/\rm D^0$ ratio could change

Number after function name means Integral cross-section in pT(0.0-0.5 GeV/c)

The final results are using the average between PYTHIA predictions and extrapolation to 0-0.5 GeV p_T range, then plus data 0.5 to 8.0 GeV p_T range. And the differences between models are quote as an additional systemic errors.

$D^{\pm}(10-40\%)$ Total cross-section using this method is: 19.2 ± 0.9 (stat.) ± 3.1 (sys.) $0.0 < p_T < 8.0$ GeV/c

$$\Lambda_{\rm c}$$
 production cross-section:

 $\Lambda_{\rm c}$ measurement cover $p_{\rm T}$ 2.0 to 8.0 GeV/c

Using the measured Λ_c/D_0 ratio and D_0 spectra to do the extrapolation down to 0 p_T :

$$\frac{dN(\Lambda_c)}{dp_T dy} (pT) = \frac{dN(D^0)}{dp_T dy} (pT) \times C_1 \frac{\Lambda_c}{D^0} (p_T)$$

 $\frac{dN(D^0)}{dp_T dy}$ (pT) is getting from D⁰ 10-40% centrality data (p_T 0-10 GeV/c).

 $\frac{\Lambda_c}{D^0}$ (p_T) are getting from different model prediction

 C_1 is a free parameter which allow the overall Λ_c/D^0 ratio could change, and fitted to L_c spectra

 $\Lambda_c d\sigma/dy$ in $p_T 2.0$ to 8.0 GeV/c are calculated by data and $p_T 0.0$ to 2.0 GeV/c are using the integrated average between these four-model. And the differences between models are quote as an additional systemic errors.

The bottom plot shows the ratio between Lc $d\sigma/dy$ data and model in 2.0 to 8.0 GeV/c

Lc (using 10-80% data) Total cross-section is: **39.7 ± 5.8(stat.) ± 26.7 (sys.)** 0.0 < pT < 8.0 GeV/c

Total charm cross-section:

Collision System	Charm Hardon	Cross-section $\frac{d\sigma}{dy} _{y=0}$ (µb)
		(per nucleon-nucleon collision)
Au+Au 200 GeV	D ⁰	39.0 ± 0.6 (stat.) ± 1.1 (sys.)
	D±	19.2 ± 0.9 (stat.) ± 3.1(sys.)
	D _s	15.4 ± 1.7 (stat.) ± 3.6(sys.)
(10-40%	Λ_c *	39.7 ± 5.8 (stat.) ± 26.7 (sys.)
p _T 0-8 Gev/c)	Total	113.3 ± 6.2 (stat.) ± 27.2 (sys.) *
P+P 200 GeV	Total	130 ± 30 (stat.) ± 26 (sys.)

* Λ_c^+ results are using 10-80% centrality

* 8% uncertainty on σ_{pp} and $N_{collision}$ are not included

Back up

Charm fragmentation at ALICE

Ground state charm hadron: D^0 , D^+ , D^+_s , Λ_c , Ξ^0_c , Ξ^+_c , Ω_c , J/ φ

 $f(c \rightarrow H_c) = \sigma(H_c) / \sigma_{all}$

HERA: $\sigma_{all} = \sigma (D^0) + \sigma (D^+) + \sigma (D_s) + \sigma (\Lambda_c) \cdot 1.14$

ALICE:
$$\sigma_{all} (d\sigma_{cc}/dy | |y| < 0.5)$$

= C*[σ (D⁰) + σ (D⁺) + σ (D_s) + σ (Λ_c) + 2* σ (Ξ^0_c)]

• Ξ_c^0 have a ~10% contribution at ALICE and can not be measured at STAR due to low statistics

possible Ξ_c^+ contribution at STAR

 Ξ_c^+ Mass 2467.71±0.23 MeV Ξ_c^+ -> p K π B.R. 6.2±3.0×10⁻³