Study of K_s^0 efficiency in $\psi(3770)$ data

Bo Wang, Yang Gao, Xinyu Shan, Haiping Peng USTC

Outline

➤Tag mode

➤Event selection

 \succ Comparison of information of K_S^0

Efficiency of K_S^0 vertex fit

Tag mode

≻Tag mode:

$$\begin{split} & \triangleright D^0 \to K^- \pi^+ \\ & \triangleright D^0 \to K^- \pi^+ \pi^0 \\ & \triangleright D^0 \to K^- \pi^+ \pi^+ \pi^- \end{split}$$

 $\succ D^+ \rightarrow K^- \pi^+ \pi^+$

➤Signal mode:

$$D^{0} \to K_{S}^{0}\pi^{+}\pi^{-}$$

$$D^{0} \to K_{S}^{0}\pi^{+}\pi^{-}\pi^{0}$$

$$D^{0} \to K_{S}^{0}\pi^{0}$$

$$\succ D^+ \to K_S^0 \pi^+$$

$$\succ D^+ \to K_S^0 \pi^+ \pi^0$$

$$\succ D^+ \to K_S^0 \pi^+ \pi^+ \pi^-$$

Event Selection

Based on DTagAlg Package in BOSS 710

Good charged tracks:

 $\square |V_z| \le 10 cm, |V_{xy}| \le 10 cm, |cos\theta| \le 0.93$

Good Photons:

 ■ Barrel
 : $E_{\gamma} > 0.025 GeV$, $|cosθ| \le 0.8$

 ■ Endcap
 : $E_{\gamma} > 0.05 GeV$, $0.84 \le |cosθ| \le 0.92$

 ■ Time cut:
 $0 \le T \le 14$ (in unit of 50 ns);

 ■ |dang|> 10°;

> PID (Particle ID Package):

TOF + dE/dx
Pion : prob(π) > prob(K);
Kaon: prob(K) > prob(π);

$\succ \pi^0$ Candidates :

Δ π^{0} : 0.115<M(γγ)<0.150 GeV/c², X²_{1c}<200;

Tag D Reconstruction:

$$\Box \Delta E = E_D - E_{beam}, M_{bc} = \sqrt{E_{beam}^2 - \overline{P}_D^2}$$

$$\Box \Delta E \text{ cut: no } \pi^0: (-0.025, 0.025) \text{ GeV}$$

with $\pi^0: (-0.055, 0.040) \text{ GeV}$
$$\Box D^0: 1.86 \le M_{bc} \le 1.87 \text{ GeV/c}^2$$

$$\Box D^+: 1.865 \le M_{bc} \le 1.875 \text{ GeV/c}^2$$

 $> \text{Missing } \mathbf{K}_{S}^{0} \text{ Candidates} :$ $\square P_{sigD} = \sqrt{E_{beam}^{2} - M_{D}^{2}}; \hat{\vec{P}}_{sigD} = -\hat{\vec{P}}_{D};$ $\square P_{trk}: \text{track in signal mode except } K_{S}^{0} \text{ (such as } \pi^{\pm}\pi^{0}) \\ \square M_{miss} =$

$$\int \left(E_{beam} - \sum E_{trk} \right)^2 - \left(\vec{P}_{sigD} - \sum \vec{P}_{trk} \right)^2$$

$$\Box \Delta M = M_{miss} - M_{K_s^0}$$

$$\Box \text{ Minimum } \Delta M \text{ is used to select best candidate}$$

\succ Selection of K_S^0 :

- **D** Reconstructed by $\pi^+\pi^-$;
- □ (Refine-) Vertex fit and second vertex fit

Comparison of information of K_S^0

Comparison between round0304 and round15

Efficiency of K_S^0 Selection

Event Selection

➢ Missing K⁰_S Candidates : $\square P_{sigD} = \sqrt{E_{beam}^2 - M_D^2}; \, \hat{\vec{P}}_{sigD} = -\hat{\vec{P}}_D;$ $\square P_{trk}: \text{track in signal mode except } K_S^0$ (such as $\pi^{\pm}\pi^0$) $\square M_{miss} =$

$$\Box \sqrt{(E_{beam} - \sum E_{trk})^2 - (\vec{P}_{sigD} - \sum \vec{P}_{trk})^2}$$
$$\Box \Delta M = M_{miss} - M_{K_s^0}$$
$$\Box \text{Minimum } \Delta M \text{ is used to select best candidate}$$

Find K_S^0 :

DReconstructed by $\pi^+\pi^-$;

(Refine-)Vertex fit and secondary vertex fit;

 $\Box 0.511 > M_{K_s} > 0.487 M_{K_s};$ $\Box L/err > 2;$

$$\Box \chi^2_{1st} \& \chi^2_{2nd} < 200;$$

>Not find K_S^0 : \Box Others;

 $> N_{extra_trk} \leq 2$

Background rejection

- Remove background with more photons
- > Angle between γ and recoil K_S^0 is more than 15°
- \blacktriangleright Cut: $E_{extray} \leq 0.37 GeV$

$D^+D^- M_{miss}^2$ distribution

Not Find K_S^0 Find K_S^0 $\begin{array}{c} \mathsf{K}^{0}_{\mathbb{S}} {\rightarrow} \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -} \\ \mathsf{K}^{0}_{\mathbb{S}} {\rightarrow} \pi^{0} \pi^{0} \end{array}$ $\begin{array}{c} \mathsf{K}^{0}_{S} {\rightarrow} \pi^{*} \pi^{-} \\ \mathsf{K}^{0}_{S} {\rightarrow} \pi^{0} \pi^{0} \end{array}$ Events /3.0000(MeV/c²) Events /3.000(MeV/c²) 14000 100 3500 3000 η other other data data 2500 2000 1500 1000 500 2000 0.1 0.15 0.2 0.25 0.35 0.15 0.3 0.4 0.2 0.25 0.3 0.35 0.4 0.1 M_{miss}^2 M_{miss}^2

Fit strategy

Simultaneous fit (share convolved gauss) in five momentum bins (bin size 200MeV)
 The ratio of K_S⁰ → π⁺π⁻ and K_S⁰ → π⁰π⁰ is fixed and is estimated from inclusive MC
 The ratio of K_S⁰ and K_L⁰ is floated with a constrain of Gauss, and the mean and error are estimated from inclusive MC with correction by PDG

Find:

- Signal shape:
 - $\breve{\Box}K_S^0 \to \pi^+\pi^-$: MC shape \otimes Gauss
- Background shape:
 Others in D⁺D⁻ inclusive MC
 Data sideband in tag D M_{bc}

Not Find:

- Signal shape:
 - $\breve{\Box}K_S^0 \to \pi^+\pi^-$: MC shape \otimes Gauss
- ▶ Peaking background shape: $\square K_S^0 \rightarrow \pi^0 \pi^0$: MC shape ⊗ Gauss $\square K_L^0$: MC shape ⊗ Gauss $\square \eta$: MC shape ⊗ Gauss
- Background shape: \Box Others in D^+D^- inclusive MC \Box Data sideband in tag D M_{bc}

$D^+D^- M_{miss}^2$: $0.4 < P_{miss} < 0.6 \ GeV/c$

Vertex fit

2023/2/27

round15

 D^+D^- : K_S^0 efficiency

MC efficiency calculated by the number of $K_S^0 \rightarrow \pi^+\pi^-$ in inclusive MC

Vertex fit

 D^+D^- : K_S^0 efficiency

MC efficiency calculated by the number of $K_S^0 \rightarrow \pi^+\pi^-$ in inclusive MC

Refine vertex fit

 D^+D^- : K_S^0 efficiency

MC efficiency calculated by the number of $K_S^0 \rightarrow \pi^+ \pi^-$ in inclusive MC

Vertex fit with refine vertex fit in round 0304

 D^+D^- : K_S^0 efficiency

MC efficiency calculated by the number of $K_S^0 \rightarrow \pi^+\pi^-$ in inclusive MC

Vertex fit with refine vertex fit in round 15

D^+D^- : K_S^0 efficiency

	Vertex fit						Refine vertex fit					
	Round 0304			Round 15			Round 0304			Round 15		
	ϵ_{mc}	ϵ_{data}	$\epsilon_{data}/\epsilon_{mc}$ -1	ϵ_{mc}	ϵ_{data}	$\epsilon_{data}/\epsilon_{mc}$ -1	ϵ_{mc}	ϵ_{data}	$\epsilon_{data}/\epsilon_{mc}$ -1	ϵ_{mc}	ϵ_{data}	$\epsilon_{data}/\epsilon_{mc}$ -1
(0.0,0.2)	$\begin{array}{c} 0.417 \\ \pm \ 0.006 \end{array}$	$0.370 \pm 0.021 \pm 0.006$	-0.112 ± 0.054	0.402 <u>+</u> 0.005	$0.386 \pm 0.016 \pm 0.006$	-0.041 ± 0.044	0.419 <u>+</u> 0.006	$\begin{array}{c} 0.376 \\ \pm \ 0.021 \\ \pm \ 0.006 \end{array}$	-0.103 ± 0.054	0.405 <u>+</u> 0.005	$0.387 \\ \pm 0.016 \\ \pm 0.007$	-0.044 ± 0.045
(0.2,0.4)	0.500 ± 0.003	$0.460 \pm 0.010 \pm 0.008$	-0.079 ± 0.026	0.497 ± 0.002	$0.464 \\ \pm 0.008 \\ \pm 0.008$	-0.066 ± 0.023	0.500 ± 0.003	$0.459 \\ \pm 0.010 \\ \pm 0.008$	-0.081 ± 0.026	0.497 ± 0.002	$0.463 \pm 0.008 \pm 0.008$	-0.069 ± 0.023
(0.4,0.6)	0.546 ± 0.002	0.527 ± 0.007 ± 0.009	-0.035 ± 0.021	0.540 ± 0.001	$0.513 \pm 0.006 \pm 0.009$	-0.050 ± 0.020	0.546 <u>+</u> 0.002	0.527 ± 0.007 ± 0.009	-0.035 ± 0.026	0.541 ± 0.001	$0.514 \\ \pm 0.006 \\ \pm 0.009$	-0.049 ± 0.020
(0.6,0.8)	0.601 ± 0.001	$0.582 \pm 0.007 \pm 0.009$	-0.032 ± 0.019	0.593 <u>+</u> 0.001	$0.560 \\ \pm 0.006 \\ \pm 0.009$	-0.056 ± 0.018	0.601 <u>+</u> 0.001	$0.581 \pm 0.007 \pm 0.009$	-0.033 ± 0.019	0.593 <u>+</u> 0.001	0.560 ± 0.006 ± 0.009	-0.055 ± 0.018
(0.8,1.0)	0.655 ± 0.002	0.671 ± 0.010 ± 0.011	0.025 ± 0.023	0.644 ± 0.002	$0.642 \pm 0.008 \pm 0.011$	-0.003 ± 0.021	0.653 ± 0.002	$0.667 \pm 0.010 \pm 0.011$	0.021 ± 0.023	0.642 ± 0.002	$0.0639 \\ \pm 0.008 \\ \pm 0.011$	-0.004 ± 0.021

Summary

- The information of K_S^0 in $\psi(3770)$ data (round03,04,15) has been checked. There is deviation in $M_{K_S^0}$ between data and MC and in V_{xy} between round 0304 and 15.
- Efficiency of K_S^0 in D^+D^- of (refine-) vertex fit in $\psi(3770)$ data is calculated. The results of refine vertex fit and vertex fit are similar but all have a deviation between data and MC where MC efficiency is larger. And there is also difference of efficiency between round0304 and 15.

Next to do

>Study K_S^0 efficiency from $D^0\overline{D}^0$ sample

 $\succ \text{Check } K_S^0 \text{ efficiency with another method } (N_{extra_trk} = 2)$

Back up

L/err with Vertex Fit

 $0.0 \le P_{K_{S}^{0}} \le 0.2 \ GeV/c^{2}$

 $0.4 \le P_{K_{S}^{0}} \le 0.6 \ GeV/c^{2}$

V_z with Refine Vertex Fit

10

10

 V_z

 $\succ \chi^2_{1st} \& \chi^2_{2rd} < 200$ $> 0.511 > M_{K_s} > 0.487$

Comparison of two vertex fit of V_{xy}

> $\chi^2_{1st} \& \chi^2_{2rd} < 200$ > 0.511 > $M_{K_s} > 0.487$ > L/err > 2

$Comparison of two vertex fit of L/err \stackrel{>}{\sim} \chi_{1st}^2 \& \chi_{2rd}^2 < 200$ $0.0 < P_{w0} < 0.2 GeV/c^2 \qquad 0.2 < P_{w0} < 0.4 GeV/c^2 \qquad 0.4 < CeV/c^2 \qquad 0.4 <$

10

15

L/err

5

500

₀ [№] -5

n

J/ψ result

09+12 Results

18+19 Results

J/ψ result

Fit result

2023/2/27

2023/2/27

Method 1

Vertex fit

$D^+D^- M_{miss}^2$: $0 < P_{miss} < 0.2 \ GeV/c$

$D^+D^- M_{miss}^2$: $0 < P_{miss} < 0.2 \ GeV/c$

$D^+D^- M_{miss}^2$: $0.2 < P_{miss} < 0.4 \ GeV/c$

$D^+D^- M_{miss}^2$: $0.2 < P_{miss} < 0.4 \ GeV/c$

$D^+D^- M_{miss}^2$: $0.4 < P_{miss} < 0.6 \ GeV/c$

$D^+D^- M_{miss}^2$: $0.4 < P_{miss} < 0.6 \ GeV/c$

$D^+D^- M_{miss}^2$: $0.6 < P_{miss} < 0.8 \ GeV/c$

$D^+D^- M_{miss}^2$: $0.6 < P_{miss} < 0.8 \ GeV/c$

$D^+D^- M_{miss}^2$: $0.8 < P_{miss} < 1.0 \ GeV/c$

$D^+D^- M_{miss}^2$: $0.8 < P_{miss} < 1.0 \ GeV/c$

Method 1

Refine vertex fit

$D^+D^- M_{miss}^2$: $0 < P_{miss} < 0.2 \ GeV/c$

$D^+D^- M_{miss}^2$: $0 < P_{miss} < 0.2 \ GeV/c$

$D^+D^- M_{miss}^2$: $0.2 < P_{miss} < 0.4 \ GeV/c$

$D^+D^- M_{miss}^2$: $0.2 < P_{miss} < 0.4 \ GeV/c$

$D^+D^- M_{miss}^2$: $0.4 < P_{miss} < 0.6 \ GeV/c$

$D^+D^- M_{miss}^2$: $0.4 < P_{miss} < 0.6 \ GeV/c$

$D^+D^- M_{miss}^2$: $0.6 < P_{miss} < 0.8 \ GeV/c$

$D^+D^- M_{miss}^2$: $0.6 < P_{miss} < 0.8 \ GeV/c$

$D^+D^- M_{miss}^2$: $0.8 < P_{miss} < 1.0 \ GeV/c$

$D^+D^- M_{miss}^2$: $0.8 < P_{miss} < 1.0 \ GeV/c$

Method 2

Event Selection

 $\searrow \text{Missing } \mathbf{K}_{S}^{0} \text{ Candidates :}$ $\geqslant P_{sigD} = \sqrt{E_{beam}^{2} - M_{D}^{2}}; \hat{\vec{P}}_{sigD} = -\hat{\vec{P}}_{D};$ $\geqslant P_{trk}: \text{track in signal mode except } K_{S}^{0} \text{ (such as } \pi^{\pm}\pi^{0})$ $\geqslant M_{miss} =$

$$\sqrt{\left(E_{beam} - \sum E_{trk}\right)^2 - \left(\vec{P}_{sigD} - \sum \vec{P}_{trk}\right)^2}$$

 $\succ \Delta M = M_{miss} - M_{K_S^0}$

 \succ Minimum ΔM is used to select best candidate

> Vertex Fit Candidates of K_S^0 :

> Reconstructed by $\pi^+\pi^-$;

$$\begin{split} & \Delta E_{sig} = \sum_{beam, M} E_{beam}^2 - \overrightarrow{P}_{sigD}^2 \\ & \searrow \text{Minimum } \Delta \mathbf{L}_{sig} \text{ cut: no } \\ & \searrow \Delta E_{sig} \text{ cut: no } \\ & \square D^0: 1.8 (\square_{bcsig} \leq 1.87 \text{ Gev}, \\ D^+: 1.865 \leq M_{bcsig} \leq 1.875 \text{ GeV/c}^2 \end{split}$$

 $> N_{extra_trk} = 2$

\succ Find K_S^0 :

- Vertex fit;
- \succ Reconstructed by $\pi^+\pi^-$;
- $\succ \Delta E_{sig} = E_{sigD} E_{beam};$
- \succ Minimum ΔE_{sig} is used to select best candidate;
- $> 0.511 > M_{K_s} > 0.487 M_{K_s};$
- > L/err > 2;
- $\succ \chi^2_{1st} \& \chi^2_{2rd} < 200;$

\succ Not find K_S^0 :

- ➢ Others;
- \blacktriangleright Such as K^0_L , $K^0_S \to \pi^0 \pi^0$ and η

For D^+D^- refine vertex fit

 $D^+D^- M_{miss}^2$

D^+D^- : Three channels

D^+D^- : Three channels

maxGamEall

2023/2/27

extraEall

Method 1

Background rejection of K_S^0

D^+D^- : Three channels

 $D^+D^-: D^+ \to K_S^0 \pi^+ + c.c.$

 $D^+D^-: D^+ \to K_S^0 \pi^+ + c.c.$

maxGamE202

extraE202

extraE cut with max value:0.43 efficiency:0.967 ;rejection:0.352

 $D^+D^-: D^+ \to K_S^0 \pi^+ \pi^0 + c.c.$

 $D^+D^-: D^+ \to K_S^0 \pi^+ \pi^0 + c.c.$

maxGamE203

extraE203

 $D^+D^-: D^+ \to K^0_S \pi^+ \pi^+ \pi^- + c.c.$

 $D^+D^-: D^+ \to K^0_S \pi^+ \pi^+ \pi^- + c.c.$

maxGamE204

extraE204

72
Fit for *M*_{bc}

$D^+D^- M_{bc}: 0 < P_{miss} < 0.2 \ GeV/c$

$D^+D^- M_{bc}: 0 < P_{miss} < 0.2 \ GeV/c$

$D^+D^- M_{bc}$: $0.2 < P_{miss} < 0.4 \ GeV/c$

$D^+D^- M_{bc}$: $0.2 < P_{miss} < 0.4 \ GeV/c$

$D^+D^- M_{bc}$: $0.4 < P_{miss} < 0.6 \ GeV/c$

$D^+D^- M_{bc}: 0.4 < P_{miss} < 0.6 \ GeV/c$

$D^+D^- M_{bc}$: 0.6 < P_{miss} < 0.8 GeV/c

$D^+D^- M_{bc}$: 0.6 < P_{miss} < 0.8 GeV/c

$D^+D^- M_{bc}$: $0.8 < P_{miss} < 1.0 \ GeV/c$

$D^+D^- M_{bc}$: $0.8 < P_{miss} < 1.0 \ GeV/c$

Vertex Fit

 $0.511 > M_{K_s} > 0.487 L/err > 2$

2023/2/27

Vertex Fit

2023/2/27

Refine Vertex Fit

Refine Vertex Fit

 $0.511 > M_{K_s} > 0.487 L/err > 2$

