Systematic Uncertainty of Electron during Low Momentum and Large Angle

Yang Gao

Tracking systematic uncertainty for $e^+(e^-)$

- Dataset: round11 Jpsi dataset
- ➢ MC: round11 inclusive Jpsi MC.
- Good Charged Tracks
 - $|V_z| < 10$ and $|V_{xy}| < 1$
 - $|cos\theta| < 0.93$
 - $N_{trk} \ge 3$
- > PID: $1\pi^+, 1\pi^-, 1e^-(e^+)$
- Good Photon
 - $|\cos\theta| < 0.8$ and $E_{min} > 25$ MeV.
 - $0.86 < |\cos\theta| < 0.92$ and $E_{min} > 50$ MeV.
 - 20° isolation from any charged tracks.
 - 0<T<14
- \succ Veto *M*(π⁺, π[−]) ∈ (0.4676, 0.5276)GeV
- > VertexFit for $1 \pi^+$, $1 \pi^-$, $1e^-(e^+)$ and $\chi^2 < 10$
- → After VertexFit, $M_{\pi^+\pi^-e^-}^{rec} \in (0.115, 0.15)$ GeV
- > Select best $M_{\pi^+\pi^-e^-\gamma}^{rec}$ to electron mass PDG
- > 1C Kinematic Fit $\pi^+\pi^-e^-\gamma$ and $\chi^2 < 10$

- ▶ Vertex Point Distance $D_{V0V1} < 1$ cm and $D_{V0V2} < 1$ cm
 - Vertex Point V0 for $\pi^+\pi^-$, V1 for π^+e^- , V2 for π^-e^-
- > Other Tracks: have the mini angle during the missing track.
- Find e^+ : have another track and mini angle $< 90^{\circ}$
- Not Find e^+ : no another track or mini angle > 90°

rowNo	decay initial-final states	iDcyIFSts	nEtr	nCEtr
1	$J/\psi \dashrightarrow e^+e^-\pi^+\pi^-\gamma^F$	1	1990	1990
2	$J/\psi \dashrightarrow \pi^0 \pi^+ \pi^-$	0	1748	3738
3	$J/\psi \dashrightarrow \mu^+\mu^-$	4	4	3742
4	$J/\psi \dashrightarrow \pi^+\pi^-\gamma$	3	1	3743
5	$J/\psi \dashrightarrow e^+e^-\pi^+\pi^-\gamma^F\gamma$	2	1	3744
6	$J/\psi \dashrightarrow \pi^0 \pi^0 \pi^+ \pi^-$	5	1	3745
7	$J/\psi \dashrightarrow e^+e^+e^-e^-\pi^+\pi^-$	6	1	3746
8	$J/\psi \dashrightarrow \pi^+\pi^+\pi^-\pi^-$	7	1	3747
9	$J/\psi \rightarrow \pi^0 \pi^+ \pi^- \gamma$	8	1	3748

Pure level > 99.7%

Tracking systematic uncertainty for $e^+(e^-)$

• The efficiency:

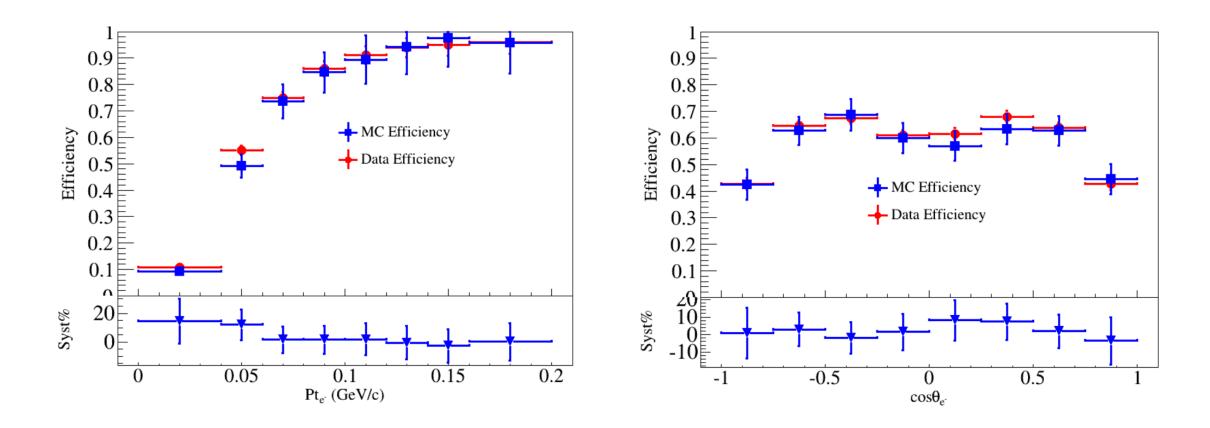
$$\epsilon = \frac{N_1}{N_1 + N_0}$$

Where N_1 is the number with two good charged tracks events, N_0 is the number with one good charged tracks events.

• The systematic error:

$$\delta = \frac{\epsilon_{data} - \epsilon_{MC}}{\epsilon_{MC}}$$

Where ϵ_{data} is the efficiency of data, ϵ_{MC} is the efficiency of MC.


• The error of systematic error:

$$\Delta(\delta) = \frac{\epsilon_{data}}{\epsilon_{MC}} \times \sqrt{(\frac{\delta_{data}}{\epsilon_{data}})^2 + (\frac{\delta_{MC}}{\epsilon_{MC}})^2}$$

Where ϵ_{data} is the efficiency of data, ϵ_{MC} is the efficiency of MC, δ_{data} is the error of efficiency of data, δ_{MC} is the error of efficiency of MC.

Tracking systematic uncertainty for $e^+(e^-)$

After 2D weight

- Dataset: round11 Jpsi dataset
- ➢ MC: round11 inclusive Jpsi MC.
- Good Charged Tracks
 - $|V_z| < 10$ and $|V_{xy}| < 1$
 - $|cos\theta| < 0.93$
 - $N_{trk} \ge 4$
- > PID: $1 \pi^+, 1 \pi^-, 1e^-(e^+)$
- ➢ Good Photon
 - $|\cos\theta| < 0.8$ and $E_{min} > 25$ MeV.
 - $0.86 < |cos\theta| < 0.92$ and $E_{min} > 50$ MeV.
 - 20° isolation from any charged tracks.
 - 0<T<14
- ≻ Veto $M(\pi^+, \pi^-) \in (0.4676, 0.5276)$ GeV
- ➢ 4C Kinematic Fit π⁺π[−]e[−]γ and other tracks and select mini χ^2 and $\chi^2 < 10$
- ≻ After 4C, $M_{e^-e^+\gamma} \in (0.115, 0.15)$ GeV
- > Use GammaConv Package for e^- and candidate track.
 - $R_{xy} < 1$ cm

- PID e^+ : the candidate track is pid to e^+
- Not PID e^+ : the candidate track is not pid to e^+

Table 2: Decay initial-final states.

rowNo	decay initial-final states	iDcyIFSts	nEtr	nCEtr
1	$J/\psi \dashrightarrow e^+e^-\pi^+\pi^-\gamma^F$	0	5569	5569
2	$J/\psi \dashrightarrow \pi^0 \pi^+ \pi^-$	1	18	5587
3	$J/\psi \dashrightarrow e^+e^-\pi^+\pi^-\gamma^F\gamma^F$	2	1	5588

Pure level > 99.5%

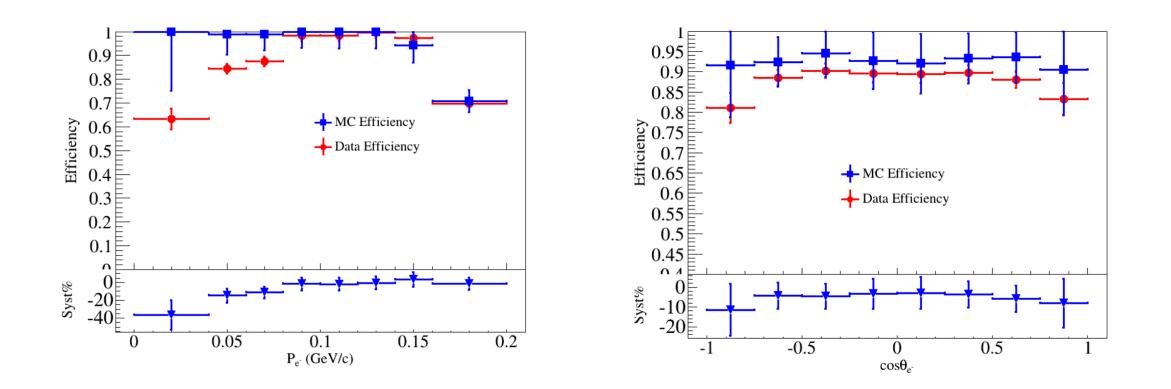
• The efficiency:

$$\epsilon = \frac{N_1}{N_1 + N_0}$$

Where N_1 is the number with the track is identified as e, N_0 is the number with the track don't be identified as e.

• The systematic error:

$$\delta = \frac{\epsilon_{data} - \epsilon_{MC}}{\epsilon_{MC}}$$

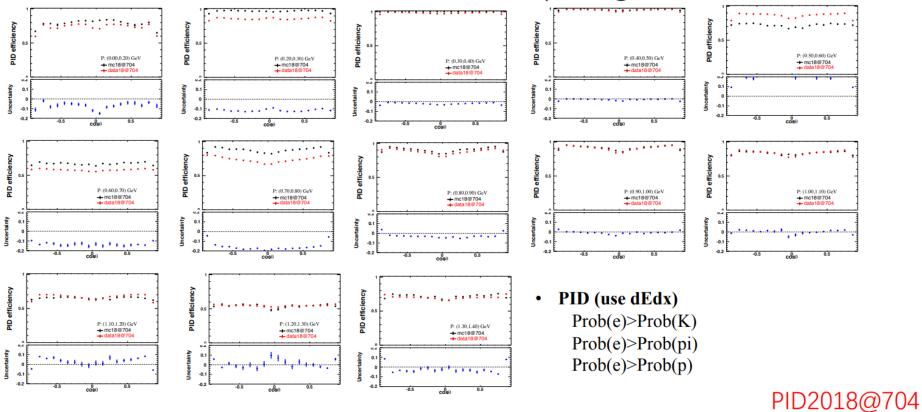

Where ϵ_{data} is the efficiency of data, ϵ_{MC} is the efficiency of MC.

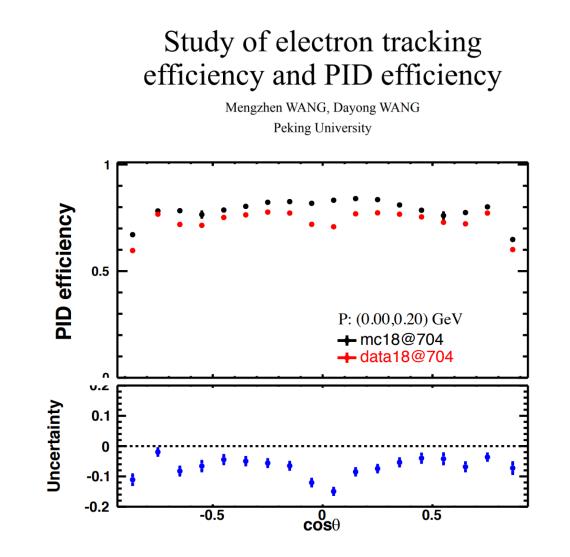
• The error of systematic error:

$$\Delta(\delta) = \frac{\epsilon_{data}}{\epsilon_{MC}} \times \sqrt{\left(\frac{\delta_{data}}{\epsilon_{data}}\right)^2 + \left(\frac{\delta_{MC}}{\epsilon_{MC}}\right)^2}$$

Where ϵ_{data} is the efficiency of data, ϵ_{MC} is the efficiency of MC, δ_{data} is the error of efficiency of data, δ_{MC} is the error of efficiency of MC.

After 2D weight




Study of electron tracking efficiency and PID efficiency

Mengzhen WANG, Dayong WANG

Peking University

$\cos\theta$ distribution in different p region

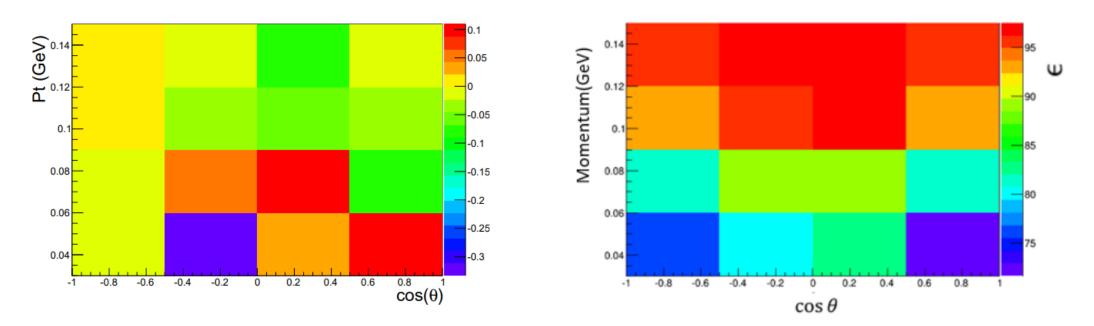
Δ_{trk}	(0.00, 0.20)
(-0.93, -0.8)	$99.95 {\pm} 0.22$
(-0.8, -0.7)	$99.03 {\pm} 0.09$
(-0.7, -0.6)	$99.98 {\pm} 0.13$
(-0.6, -0.5)	100.05 ± 0.14
(-0.5, -0.4)	$99.89 {\pm} 0.13$
(-0.4, -0.3)	$99.89 {\pm} 0.14$
(-0.3, -0.2)	$100.13{\pm}0.20$
(-0.2, -0.1)	100.02 ± 0.17
(-0.1, 0.0)	$99.74 {\pm} 0.07$
(0.0, 0.1)	$100.04{\pm}0.16$
(0.1, 0.2)	$99.81 {\pm} 0.12$
(0.2, 0.3)	$99.84{\pm}0.12$
(0.3, 0.4)	$99.83 {\pm} 0.12$
(0.4, 0.5)	$99.79 {\pm} 0.08$
(0.5, 0.6)	$99.90 {\pm} 0.10$
(0.6, 0.7)	$99.83 {\pm} 0.11$
(0.7, 0.8)	$99.19 {\pm} 0.15$
(0.8, 0.93)	$100.38 {\pm} 0.28$

Correct efficiency

Correct efficiency:

$$\epsilon' = \frac{\sum_{bin} (\sum_{i \in bin} \omega_i)}{N_0}$$
$$\epsilon_0 = \frac{\sum_{bin} (\sum_{i \in bin} 1)}{N_0} = \frac{N_{rec}}{N_0}$$

> So


$$c = \frac{\sum_{bin} (\sum_{i \in bin} \omega_i)}{N_{rec}}$$
$$\sigma_c = \frac{\sqrt{\sum_{bin} (\sum_{i \in bin} \sigma_i)^2}}{N_{rec}}$$

Scale Factor	Value
C _{trk}	1.227
C _{pid}	0.828
$c_{trk} \times c_{pid}$	1.016

Systematic Uncer	Value%	
Tracking	2.949	~2
PID	2.311	~1.5

Correct efficiency

 $e^+e^- \rightarrow \gamma e^+e^-$

Tracking of Low momentum double e^{\pm}	2.9
PID of Low momentum double e^{\pm}	1.4