(Anti-)H3L Yield in Isobar Collisions at 200 GeV

Dongsheng Li University of Science and Technology of China

STAR collaboration meeting Feb. 2023

Outline

- Introduction
- Data Set, Event and Track Selection
- (Anti-)H3L Reconstruction
- Signal Extraction
- Embedding Tuning and Checks
- Efficiency, Yield and Particle Ratios
- Summary and Outlook

Introduction

- Hypernuclei production mechanism is not well understood
 - Thermal model
 - Coalescence
- Multiplicity dependence of S3 may help distinguish different models(behavior in peripheral cases are very crucial)
 - $S_3 = \frac{{}^{3}_{\Lambda}H/{}^{3}He}{\Lambda/p}$
 - Lack of statistics for ALICE results
- Isobar data with high statistics offers an opportunity
 - ~4 billion events available

Data Set, Event and Track Selection

- Data set: Run18 Isobar (Ru+Ru & Zr+Zr 200 GeV, SL20c)
- Trigger ID: 600001, 600011, 600021, 600031
- Official badrun list and centrality definition
- Decay channel: ${}^{3}_{\Lambda}H \rightarrow \pi^{-} + {}^{3}He, \ {}^{3}_{\overline{\Lambda}}\overline{H} \rightarrow \pi^{+} + {}^{3}\overline{He}$
- Event selection cuts: -35 < Vz < 25 (cm), Vr < 2 cm
- Track selection cuts:
 - NHits \geq 15, nHitsFit/nHitsPoss \geq 0.52, 0.12 \geq dEdxError \geq 0.04
 - $p_{\rm T} \ge 0.1$, $|\eta| \le 1.5$
 - PID:
 - He3: dEdx selection
 - 2.5-sigma for lower limit
 - 3-sigma for higher limit
 - Pion: |nsigma_pi| < 3

- (Anti-)H3L is reconstructed in different centralities (0-10%, 10-20%, 20-40%, 40-80% and 0-80%) with the KFparticle package
- Topological cuts for (Anti-)H3L reconstruction
 - Chi2primary_pi > 10, Chi2primary_He3 < 2000
 - Chi2ndf < 5, Chi2topo <2
 - Decay length (I) > 3.4 cm, IdI > 3.5
 - He3 DCA <1, p > 2 GeV

Topo cuts from Junlin's anti-H4L analysis https://drupal.star.bnl.gov/STAR/system/files/Analysis_note_for_anti_HyperH4_ver4.pdf

- Background reconstruction (Mix Event):
 - Mix current event with 5 similar events (within same centrality bin) in buffer
 - ~10 times statistics
 - ME describes the background well

Signal Extraction

- (Anti-)H3L acceptance and selected phase space (red line)
 - |y| < 0.8 && 2.2 < pT < 4.2 for (Anti-)H3L
- pT windows for bin counting:
 - designed to be consistent with Yun's He3 results (pT/m binning matched)
 - bins with significance less than 2-sigma are not included

Embedding Tuning and Checks

- To calculate efficiency, tune the embedding to match data:
 - Target: consistent distribution of topological variables for reco data and embedding
 - Respectively apply weights on pT & y distribution in each centrality
- Iteration workflow
 - pT & y weights as output
 - Stabilized after 3-4 iterations
 - Need to check topological variables
 - Sometimes Fit() fails due to lack of statistics (then apply weights of nearby centrality)
 - Temperatures in Boltzmann function for different centralities are summarized

Cent. T(GeV)	0-80%	0-10%	10-20%	20-40%	40-80%
T(H3L)	0.41	0.45	0.43	0.42	0.42
T(Anti-H3L)	0.39	0.47	0.43	0.39	0.13

Embedding Tuning and Checks

Embedding Tuning and Checks

- Efficiency
 - From embedding: Tracking × Reconstruction efficiency
 - From PID: folded into the calculation as a weight
 - Higher efficiencies in the peripheral cases

- Corrected Yield for (Anti-)H3L
 - Corrected invariant yield = $\frac{Raw Counts}{B.R. \times Efficiency \times 2\pi \times p_T^{center} \times \Delta p_T \times \Delta y}$
 - Compare with Yun's (Anti-)He3 results
 - Systematic uncertainties are not studied yet

- Corrected Yield for (Anti-)H3L
 - Corrected invariant yield = $\frac{\text{Raw Counts}}{\text{B.R.} \times \text{Efficiency} \times 2\pi \times p_{\text{T}}^{\text{center}} \times \Delta p_{\text{T}} \times \Delta y}$
 - Compare with Yun's (Anti-)He3 results
 - Systematic uncertainties are not studied yet

14

H3L/He3 & Anti-H3L/Anti-He3 ratios

٠

- Divide H3L yield (this work) by He3 yield (Yun) within same pT/m range: 0.7~1.2. For H3L, this corresponds to a pT range of 2.2~3.4
- dN_ch/deta for corresponding centralities are not available for Isobar, the efficiency uncorrected TPC multiplicity is shown as a substitute
- Consistent with Junlin's all-refmult result
- Particle & anti-particle ratios consistent within uncertainties

 $dN_{ch}^{raw}/d\eta_{lnl<0.5}$

10²

- Numerator
 - Use a combined ratio of particle and anti-particle
- Denominator
 - Estimated with Au+Au 200 GeV results.
 - Lambda dNdy: PRL 98, 062301 (2007)
 - Proton dNdy: PRC 79, 034909 (2009)
- Large uncertainty on S3, no obvious dN_ch/deta dependence
 - Lambda/p relative uncertainty comparable with H3L/He3
 - Planning to measure Lambda in Isobar (lack of embedding now)

Relative Uncertainty	1st(40-80%)	2nd(0-80%)	3rd(20-40%)	4th(10-20%)	5th(0-10%)
$\sigma(\Lambda/p)$	0.115	0.116	0.115	0.118	0.121
$\sigma(^{3}_{\Lambda}\text{H}/^{3}\text{He})$	0.267	0.093	0.140	0.179	0.127

10²

0

10

 $dN_{ch}/d\eta_{|\eta|<0.5}$

10³

Summary and Outlook

- Summary
 - We report the pT spectra of (Anti-)H3L in Isobar collisions at 200 GeV
 - Particle ratios including H3L/He3 and S3 are calculated. We observe no significant S3 dependence on dN_ch/deta due to large uncertainty
- Outlook
 - Study systematic uncertainty of (Anti-)H3L yield
 - Measure Lambda yield in Isobar collisions and improve precision on S3

BACK UP

Lambda Reconstruction

~20% statistics

But we don't have Lambda embedding for Isobar now