$D^0 R_{AA}$ and v_2 analysis progress in Isobar collisions

Yuan Su, Yifei Zhang University of Science and Technology of China Feb. 28, 2023

Motivation

2

Contents

- D^0 signal reconstruction and yield extraction
- Efficiency correction to raw momentum spectra
- Systematic Uncertainty
- D^0 nuclear modification factor R_{AB} and elliptic flow v_2
- Summary and Next plan

Data sets and Analysis cuts

- Data sets: production_isobar_2018
- Production tag: P20ic
- Trigger: 600001, 600011, 600021, 600031 (MB)
- Embedding Request ID: 20201503
 (5M events for each for pi+, pi- and 1M events each for K+/K-)
- Badrunlist: Ru+Ru Zr+Zr

19086038,19086050,19086052,19089047,19090019,19090021,19093042,19093043,19095061,19096002, 19096005,19096006,19098005,19098017,19098018,19098020,19102020,19102023,19103041,19104012, 19107045,19111038,19111051,19112012,19112029,19113030,19114007,19114022,19116035,19120047, 19120048,19122054,19124025,19126015,19127045,19128002, 19084053,19084055,19086060,19086061, 19086062, 19086063,19086064,19086066,19087038,19087042,19110015,19116002,19125044,19125049, 19126008,19126011,19127047;19083050,19084032,19084033,19085039,19086016,19086026,19088052, 19088053,19088055,19089005,19095031,19097001,19097005,19097040,19097046,19100054,19102055, 19103007,19103022,19107002,19115020,19117030,19122004,19122005,19122010,19126043,19088051, 19097057,19110051,19117036, 19120021, 19120025

Data sets and Analysis cuts

• Analysis cuts

Event Level cuts		Track quality cuts		PID cuts		
Cuts	Value	Cuts	Value	Cuts	Value	
<i>V_z</i> (-35,25) cm		$p_T~({ m GeV/c})$	> 0.6			
V_r	< 2. cm	TPC Nhits	≥20	btofYLocal (TOF matched)	[-1.8, 1.8]	
VzDiff	VzDiff < 3. cm		[0.52, 1.2]			
!Badrun_list		gDCA	≤ 2.0 cm	p < 1.6 && β > 0	nybrid PID functions	
GoodTrigger		ŋ	< 1.	n > 1 6 &&	hybrid PID functions	
!isBadRun()		nHitsDedx	> 10.	$p = 1.0 \operatorname{add} p = 0 (100)$		
passnTofMatchRefmultCut()		charge	±1	$p \ge 1.6 \&\&$!TofisAvailble	$ n\sigma_{K} < 2. \&\& n\sigma_{\pi} < 2.$	
# Events 2.7B		Primary tracks		<i>У</i> _D °	< 1.0	
10 ⁶ 1500 1000		hybrid PID functions $f_{\pi}^{max}(p) = \begin{cases} 5.1-2.25p, \ p \le 1.6\\ 1.5, \ p > 1.6 \end{cases}$ $n\sigma_X^{\text{TOF}}$ $f_K^{max}(p) = \begin{cases} 6.129 - 1.9316p, \ p \le 2.5\\ 1.3, \ p > 2.5 \end{cases}$ $f_K^{min}(p) = \begin{cases} -7.54 + 5.83p - 1.31p^2, \ p \le 1.7\\ -1.4149, \ p > 1.7 \end{cases}$		$F = \frac{\frac{1}{\beta_{2}^{mea}} - \frac{1}{\beta_{2}^{m}}}{R_{1/\beta}} = \frac{1}{0}$	p $Default cut ~2\sigma$ for high p_T 2 2 2 2.5 3 p (GeV/c)	

D^0 signal reconstruction

hadronic modes: $D^0 \rightarrow K^- + \pi^+; \overline{D}{}^0 \rightarrow K^+ + \pi^- (\Gamma_i / \Gamma \sim 3.95\%)$

• The K, π invariant mass distribution with centrality 0-80% and p_T range 0-8 GeV/c at midrapidity.

• The mix-event method can well reproduce the combination background (solid red line).

 D⁰ signal at 0-10% (a), 10-40% (b), 40-80% (c) centrality bins with transverse momentum range 0-8 GeV/c at midrapidity.

Efficiency correction procedures

 $\frac{d^2 N}{2\pi p_T dp_T dy} = \frac{\Delta N^{raw} / \epsilon_{D^0}^{reco} / 2}{2\pi p_T \Delta p_T \Delta y \times N_{events} \times B.R.}$ $\epsilon_{D^0}^{reco} = \epsilon_{Accept} \times \epsilon_{TPC} \times \epsilon_{PID}$

- $\epsilon_{PID} = \epsilon_{n\sigma_X} \cdot \epsilon_{TOF} \cdot \epsilon_{n\sigma_X^{TOF}} + \epsilon_{n\sigma_X} \cdot (1 \epsilon_{TOF})$
- ΔN^{raw} : the raw yield measured in the bin $\Delta p_T \Delta y$;
- $\epsilon_{Accept} \times \epsilon_{TPC}$: TPC acceptance and tracking efficiency (embedding);

Efficiency

0.8

0.6

0.4

0.2

• ϵ_{PID} : particle identification efficiency (data).

- (a) TPC tracking efficiency for Pion
- (b) TOF matching efficiency for Pion
- (c) Pion TPC PID efficiency (black circles) and TOF PID efficiency (red circles)

2/28/2023

'

Systematic uncertainties

Signal extraction

pT GeV/c

Fit

Count

Average

Sys. (%)

Fit sys. (%)

 \mathbf{Fit}

Count

Average

Sys. (%)

Fit sys. (%)

Fit

Count

Average

Sys. (%)

Fit sys. (%)

Fit

Count

Average

Sys. (%)

Fit sys. (%)

0 - 0.7

10.76

10.57

10.66

0.9

0.2

3.14

2.92

3.03

3.7

3.2

6.45

6.30

6.38

1.2

-

1.26

1.27

1.27

0.14

0.8

0.7 - 1.1

9.09

9.37

9.23

1.5

0.2

2.59

2.66

2.62

1.2

4.5

4.35

4.54

4.45

2.1

-

1.09

1.16

1.12

3.2

3.4

- > The difference between the fitting and counting methods (1.69, 2.04) GeV/ c^2 ;
- \succ The order of polynomial function to depict the residual background (Pol3);
- > Signal fit range (1.73, 2.00) GeV/ c^2 ;
- $\succ p_T$ cut variation for daughter particles;
- Mix-event like-sign normalization factor;

2.2 - 3.0

7.90

7.93

7.91

0.2

-

3.49

3.70

3.60

2.9

7.1

3.49

3.39

3.44

1.4

0.1

1.06

0.92

0.99

7.3

0.2

3.0-4.0

3.04

3.05

3.04

0.2

0.2

0.95

0.93

0.94

1.1

2.8

1.78

1.69

1.73

2.7

0.2

0.40

0.46

0.43

7.3

0.3

-

10

Table 3: D^0 raw yield (×10⁵) at different p_T range and centrality bin

1.6 - 2.2

10.13

9.64

9.89

2.5

0.3

3.63

3.66

3.65

0.5

1.3

5.58

5.28

5.43

2.7

0.3

0.90

0.95

0.93

3.0

1.1

40-80

10-40

0 - 10

0-80

1.1 - 1.6

9.95

9.69

9.82

1.3

0.3

4.10

3.99

4.04

1.4

2.8

5.03

5.08

5.06

0.5

0.2

0.94

0.88

0.91

3.4

1.4

8

Systematic uncertainties

 $R(nHitsFit) = \frac{N_{data}(nHitsFit > 15)/N_{data}(nHitsFit \ge 20)}{N_{emb}^{MC}(nHitsFit > 15)/N_{emb}^{MC}(nHitsFit \ge 20)}$

p_T (GeV/c)

• TPC tracking

π nHitsFit Sys

1.4

1.2

0.8 0.6

1.4

1.2

0.8 0.6

1.4

1.2

0.8 0.6

- DCA: 2cm (default);
- ➢ nHitsFit: 20 (default)

K nHitsFit Sys 1.4 70-80% 60-70% 50-60% 70-80% 60-70% 50-60% 1.2 0.8 0.6 1.4 40-50% 30-40% 20-30% 40-50% 30-40% 20-30% 1.2 0.8 0.6 1.4 10-20% 5-10% 0-5% 5-10% 0-5% 10-20% 1.2 0.8 0.6 .0 0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5 0.5 1 1.5 0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5 0.5 1.5 2 2.5 2 2.5 1

● B.R. 0.5%

• p + p inelastic scattering cross section 8%

p_⊤ (GeV/c)

Systematic uncertainties

 $R_{AA} = \frac{1}{\langle N_{\rm bin} \rangle} \frac{\mathrm{d}^2 N_{AA}^{D^0} / \mathrm{d} p_T \, \mathrm{d} y}{\mathrm{d}^2 N_{pp}^{D^0} / \mathrm{d} p_T \, \mathrm{d} y}$

Table Systematic uncertainties in D^0 analysis							
		0-10%	10-40%	40-80%	Correlation in pT		
	Raw yield	11.3 - 19.6%	10.0-14.0%	8.3-11.2 %	uncorrelated		
	Double counting	0.7%	0.8%	0.9%	uncorrelated		
spectra	PID	3%	3%	3%	Largely correlated		
	TPC	2-6%	2-6%	2-6%	Largely correlated		
	B.R.	0.5%	0.5%	0.5%	global		
D	<nbin></nbin>	1.6%	0.6%	0.4%	global		
n_{AA}	ppbase	20.6-71.8%	20.6-71.8%	20.6-71.8%	partially correlated		
		0-10%		10-40%	10		
Rcp	Raw yield	13.6 - 20.7%		12.4-16.5 %	uncorrelated		
(/40-80%)	B.R.	0		0	global		
	TPC	0		0	Largely correlated		
Integrated cross		pt>0		pt > 4 GeV/c			
section	Total	12.7 - 15.8%		12.0-15.2~%			

p_T Spectra and Integrated yields

- D^0 invariant yields at mid-rapidity (|y| < 1) vs. transverse momentum for different centrality classes in Isobar (solid) and Au + Au (open) collisions at $\sqrt{s_{NN}} = 200$ GeV.
- D^0 integrated corss sections per nucleon-nucleon collision in Isobar.

- $D^0 R_{AA}$ for different centrality classes in Isobar collisions compared to that of Au + Au results, quenching of hard probes.
- D^0 integrated R_{AA} vs. $< N_{part} >$ for $p_T > 0$ and $p_T > 4$ GeV/c in Isobar and Au + Au collisions.

m_T Spectra and Collectivity

- D^0 invariant yield at mid rapidity (|y| < 1) vs. p_T for different centrality bins fitted with m_T distribution.
- T_{eff} for D^0 in central Isobar collisions is consistent with that of Au + Au results.

- D^0 invariant yield at mid rapidity (|y| < 1) vs. p_T for different centrality bins fitted with blast-wave function.
- D^0 freeze out temperature in Isobar collisions are consistent with that of in Au + Au collisions for the same centrality.
- The average flow velocity increases with central collision, and (q -1) is also found to be close to zero.

Event plane method to measure $D^0 v_2$

- (3) Signal reconstruction with 4 p_T bins and 5 $\Delta \phi$ bins (semicircle)

(4) Different (ϕ - ψ) bin D^0 signal at 1.0 < p_T < 2.0 GeV/c

• $D^0 p_T$ spectra, R_{AA} and integrated cross sections are measured in Isobar, and the result is compared to Au+Au collisions at 200 GeV;

• Non-zero $D^0 v_2$ in Isobar collisions at 200 GeV is observed;

• The next step is to push $D^0 R_{AA}$ result to PWC review.

Back up

Isobar $\sqrt{S_{NN}} = 200 \ GeV$ Primary tracks

0-10%

10-40%

40-80%

- Less than 1.7 M events are used to provide analysis method check;
- A more precise comparison is needed with published hadron v_2 result in Isobar.

Backup

3. < p_T < 6.5

