Inclusive Jet Reconstruction at EicC

Senjie Zhu

10th March, 2023

Hadronization and jet at pythia(ep collision)

- The string of the initial $q_0\overline{q_1}$ system breaks up and produced $q_2\overline{q_2}$.
- $q_0 \overline{q_2}$ forms a hadron and carries out energy of q_0 .
- The string of $q_2\overline{q_1}$ will break up when q_2 and $\overline{q_1}$ fly away...
- The hadron formed by $q_0\overline{q_2}$ doesn't take away all the energy of q_0 . The remaining energy of q_0 are taken by $q_2\overline{q_1}$ system which continues to fragment. In another word, fragmentation is also a process of interaction between multi partons. Here, energy of q_0 is taken by $\overline{q_1}$ when fragmenting.

Example

I	KS	id	orig	daught	er	ldaught	er	рх	ру	pz	E	m	XV	yv	ZV			
1	21	11	0	3	4	0	0	-3.5	3.5	0.00051	0	0	0					
2	21	2212	0	5	0	-0	0	20	20.022	0.93827	0	0	0					
3	21	11	1	0	0	1.8302	0.070403	}	-3.00102	1	3.51577	0.00051	0	0	0			
4	21	22	1	0	0	-1.8302	-0.07040)3	-0.4989	53	-0.0157	35	-1.89823		0	0	0	
5	21	2212	2	0	0	-0	-0	20	20.022	0.93827	0	0	0					
6	21	22	4	0	0	-1.91152)	-0.07353	31	-0.19704	11	0.308006	5	-1.8982	3	0	0	0
7	21	2	5	0	0	0.014501		0.000558	3	3.51229	3.51232	0	0	0	0			
8	21	22	6	0	0	-1.91152	2	-0.07353	31	-0.19704	11	0.308006	5	-1.8982	3	0	0	0
9	21	2	7	0	0	0.014501		0.000558	3	3.51229	3.51232	0	0	0	0			
10	21	2	9	0	0	-1.89702	2	-0.07297	'3	3.31525	3.82033	0	0	0	0			
11	1	11	3	0	0	1.8302	0.070403	}	-3.00102	1	3.51577	0.00051	0	0	0			
12	12	2	10	15	17	-1.47395	5	0.204901		2.01559	2.50541	0	0	0	0			
13	11	2101	5	15	17	-0.35624	17	-0.27530)4	17.4854	17.5008	0.57933	0	0	0			
14	11	92	12	15	17	-1.8302	-0.07040)3	19.501	20.0062	4.07493	0	0	0				
15	1	211	12	0	0	-1.29185	5	0.224176	5	1.6764	2.13282	0.13957	0	0	0			
16	1	-211	13	0	0	-0.26357	9	-0.14026	i9	4.65637	4.66802	0.13957	0	0	0			
17	1	2212	13	0	0	-0.27477	7	-0.15430	9	13.1682	13.2054	0.93827	0	0	0			

(x,y,z,t)=(-1.473950,0.204901,2.015586,2.505414) (P,eta,phi,E)=(2.505414,1.111217,3.003463,2.505414)

(x,y,z,t)=(-0.356247,-0.275304,17.485425,17.500811) (P,eta,phi,E)=(17.491220,4.352684,-2.483665,17.500811) 2101

(x,y,z,t)=(-1.291848,0.224176,1.676405,2.132825) (P,eta,phi,E)=(2.128253,1.065318,2.969772,2.132825) parentID 2 id 211

(x,y,z,t)=(-0.263579,-0.140269,4.656368,4.668018) (P,eta,phi,E)=(4.665931,3.441131,-2.652541,4.668018) parentID 2101 id -211

(x,y,z,t)=(-0.274770,-0.154309,13.168238,13.205383) (P,eta,phi,E)=(13.172008,4.425853,-2.629892,13.205383) parentID 2101 id 2212

E_particle/E_parton 0.851286

Parton MC ep3.5x20 pythiaeRHIC

Parton MC ep3.5x20 pythiaeRHIC

Algorithm

$$\begin{aligned} d_{ij} &= \min(k_{ti}^{2p}, k_{tj}^{2p}) \frac{\Delta_{ij}^2}{R^2}, \quad \text{Anti-kT p=-1} \\ d_{iB} &= k_{ti}^{2p}, \end{aligned}$$

where $\Delta_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$ and k_{ti} , y_i and ϕ_i are respectively the transverse momentum, rapidity and azimuth of particle *i*. In addition to the usual radius parameter *R*, we have added a parameter *p* to govern the relative power of the energy versus geometrical (Δ_{ij}) scales.

In the "inclusive" formulation of the k_t algorithm [9], the d_{ij} and d_{iB} distances are the same as above. The only difference is that when a d_{iB} is smallest, then *i* is removed from the list of particles/pseudojets and added to the list of final "inclusive" jets (this is instead of being incorporated into a beam jet). There is no d_{cut} threshold and the clustering continues until no particles/pseudojets remain. Of the final jets, generally only those above some transverse momentum are actually used.³ Because the distance measures are the same in the inclusive and exclusive algorithms, the clustering sequence is common to both formulations (at least up to d_{cut}), a property that will be reflected in FastJet's common interface to both formulations. R=0.2

R=0.5

R=1

R=3

R=4

