

Measurements of light hypernuclei properties and production yields in Au+Au collisions from the STAR experiment

(for the STAR collaboration) University of Science and Technology of China

University of Tsukuba

Xiujun Li

Supported in part by the

Office of Science

Outline

Introduction

- Hypernuclei measurements in STAR BES-II
 - Internal structure
 - Branching ratios, lifetimes
 - Production mechanism

Yields, particle ratios, directed flow

Summary and outlook

Introduction: what and why

• What are hypernuclei?

- Why hypernuclei?
 - Probe hyperon-nucleon (Y-N) interaction lacksquare
 - Strangeness in high density nuclear matter
 - Equation-of-State (EoS) of neutron star

Marian Danysz (right) and Jerzy Pniewski (left) discovered hypernuclei in 1952

|e

 $^{4}_{\Lambda}$ He

 $^{4}_{\Lambda}$ He

•
Chatte
H.
ee,
Eur.
P
h
S.
\triangleright
Σ
\bigcirc
16
\Box
52:
N

Introduction: how

- Experimentally, we can make measurements related to:
 - 1. Internal structure
 - Lifetime, binding energy, branching ratios etc. \bullet

Understanding hypernuclei structure can provide insights to the Y-N interaction

- 2. Production mechanism
 - Spectra, collectivity etc.

The process of hypernuclei formation in violent heavy-ion collisions is not well understood

Introduction: RHIC BES program

extends the energy reach below $\sqrt{s_{NN}}$ = 7.7 GeV, down to 3.0 GeV

• During the BES-II program, STAR utilized the fixed-target (FXT) setup, which

Introduction: hypernuclei and STAR BE

 Hypernuclei measurements are scarce in heavy-ion collision experiments

A. Andronic et al. PLB (2011) 697:203–207

- density

 \rightarrow A great opportunity to study hypernuclei production

• At low beam energies, hypernuclei production is expected to be enhanced due to high baryon

List of BES-II datasets:

Datasets with large statistics taken during **BES-II**

C		
J -		S IAI
	7	
Year	$\sqrt{s_{NN}}$ [GeV]	Events
2018	27	555 M
	<u>3.0</u>	258 M
	<u>7.2</u>	155 M
2019	19.6	478 M
	14.6	324 M
	<u>3.9</u>	53 M
	<u>3.2</u>	201 M
	<u>7.7</u>	51 M
2020	11.5	235 M
	<u>7.7</u>	113 M
	<u>4.5</u>	108 M
	<u>6.2</u>	118 M
	<u>5.2</u>	103 M
	<u>3.9</u>	117 M
	<u>3.5</u>	116 M
	9.2	162 M
	<u>7.2</u>	317 M
2021	7.7	101 M
	<u>3.0</u>	2103 M
	<u>9.2</u>	54 M
	<u>11.5</u>	52 M
	<u>13.7</u>	51 M
	17.3	256 M
	<u>7.2</u>	89 M

Pa

fication and hypernuclei reconstruction

- Particle identification from energy loss measurement using TPC
- KF particle package^[1] is used for signal reconstruction
- Hypernuclei reconstructed via their weak decay channels: $^{3}_{\Lambda}H \rightarrow ^{3}He + \pi^{-}$ $^{3}_{\Lambda}H \rightarrow d + p + \pi^{-}$ $^{4}_{\Lambda}H \rightarrow ^{4}He +$

2023/4/24

$$\pi^{-}$$
 $^{4}_{\Lambda}\text{He} \rightarrow ^{3}\text{He} + p + \pi^{-}$

[1]Zyzak M, Kisel I, Senger P. Online selection of short-lived particles on many-core computer architectures in the CBM experiment at FAIR[R]. Collaboration FAIR: CBM, 2016.

Vertex

Hypernuclei signal reconstruction

Relative branching ratio: $R_3 =$

- Improved precision on R₃ lacksquare

2023/4/24

- F. Hildenbrand et al. PRC 102, 064002 (2020)
- Recent calculation shows that R_3 may be sensitive to the binding energy (B_{Λ}) of $^{3}_{\Lambda}H$
 - $B_{\Lambda} \rightarrow$ provide constraints to Y-N interaction
 - Using $\sqrt{s_{NN}} = 3.0$ GeV data:
 - $R_3 = 0.272 \pm 0.030(stat.) \pm 0.042(syst.)$
 - Model comparison suggesting a weakly-bounded state for ${}^{3}_{\Lambda}H$

• Stronger constraints on absolute B.R.s and $^{3}_{\Lambda}H$ internal structure models

${}_{\Lambda}^{3}$ H, ${}_{\Lambda}^{4}$ H and ${}_{\Lambda}^{4}$ He lifetimes

³_AH: ALICE(2022),arXiv:2209.07360 ⁴_AH: JPARC(2023),arXiv:2302.07443

2023/4/24

$^{\mathbf{4}}_{\Lambda}\mathbf{H}$

⁴_{\lambda}He

Using $\sqrt{s_{NN}}$ = 3.0 GeV and 7.2 GeV datasets:

- $^{3}_{\Lambda}$ H: $\tau = 221 \pm 15$ (stat.) ± 19 (syst.)[ps]
- $^{4}_{\Lambda}$ H: $\tau = 218 \pm 6$ (stat.) ± 13 (syst.)[ps]

⁴_AHe: $\tau = 229 \pm 23(\text{stat.}) \pm 20(\text{syst.})[\text{ps}]$

- Indication of shorter lifetimes for ${}^3_{\Lambda}H$, ${}^4_{\Lambda}H$ and ${}^4_{\Lambda}He$ than that of free Λ (with 1.8 σ , 3.0 σ , 1.1 σ respectively)
- Consistent with former measurements and world average values
- $\tau_{_{\Lambda}H}$: consistent with calculation including pion FSI^[1] and calculation with Λd 2-body picture^[2] within 1 σ
- au_{4H}^{4} and au_{4He}^{4} : consistent with expectations from isospin rule

Precision ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H measurements provide tighter constraints on models.

[1]A. Gal and H. Garcilazo, PLB 791, 48 (2019) [2]J.G. Congleton, J. Phys. G 18, 339 (1992)

Hypernuclei acoduction at 3 GeV

but fails to reproduce the trend of $^{3}_{\Lambda}$ H in 10-50%

2023/4/24

• Transport model (JAM) with coalescence approximately reproduces trends of $^{4}_{\Lambda}$ H rapidity distributions seen in data,

$^{3}_{\text{A}}\text{H}$ and $^{4}_{\text{A}}\text{H}$ directed flow at 3 GeV

- First observation of ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H directed flow (v₁) in mid-central 5-40% Au+Au collisions at 3 GeV
- Mid-rapidity v_1 slopes of ${}^3_{\Lambda}H$ and ${}^4_{\Lambda}H$ follow baryon mass scaling.

 \rightarrow Imply coalescence process to be the dominant formation mechanism for $^{3}_{\Lambda}H$ and $^{4}_{\Lambda}H$ production in the 3 GeV heavy-ion collisions

2023/4/24

arXiv:2211.16981 accepted by PRL

Xiujun Li, ATHIC 2023

Energy dependence of hypernuclei production in heavy-ion collisions

2023/4/24

Hyper-toution for the stration of the stration of the stration of the strate of the st

- - Observed at both 0-10% and 10-40% centrality in Au+Au collisions at 3 GeV.
- The ${}^{4}_{\Lambda}H/{}^{4}He$ yield ratios are comparable to that of Λ/p
- Thermal model calculations including excited $^4_\Lambda H^*$ feed-down show a similar trend
 - Feed-down from excited state enhances ${}^{4}_{\Lambda}H$ production
 - Support creation of excited A=4 hypernuclei in heavy-ion collisions

A. Andronic et al, PLB 697 (2011) 203 (Thermal model)

at 3 GeV

Strangeness population factor $S_{\rm A}$

Relative suppression of hypernuclei production compared to light nuclei production

$$S_{A} = \frac{{}^{A}_{\Lambda}H}{{}^{A}_{He} \times \frac{\Lambda}{p}} = \frac{B_{A}({}^{A}_{\Lambda}H)(p_{T})}{B_{A}({}^{A}_{He})(p_{T})} o^{\triangleleft}$$

S.Zhang, PLB 684(2010)224

- B_A: Coalescence parameters

Expect ~1 if no suppression S₃< 1: relative suppression of ${}^{3}_{\Lambda}H/{}^{3}He$ compared to Λ/p $S_4 \sim 1$, $S_4 > S_3$: ${}^4_{\Lambda}H/{}^4He$ is comparable to Λ/p , possibly due to feed-down contributions from exited state that enhances ${}^4_{\Lambda}H$

No obvious kinematic and centrality dependence of $S_{3,4}$ is observed at 3 GeV.

 \rightarrow Coalescence parameter B_A of A_AH and AHe follows similar tendency versus p_T , rapidity and centrality,

2023/4/24

 10^{-1}

- indicates that N-N and Y-N interactions that drive coalescence dynamics in these collisions are similar

Energy dependence of S₃

- STAR, Science 328 (2010) 58 ALICE, PLB 754 (2016) 360 E864, PRC 70 (2004) 024902 NA49, J.Phys.Conf.Ser.110(2008)032010
- A. Andronic et al, PLB 697 (2011) 203 (Thermal (GSI))
- S. Zhang, PLB 684(2010)224 (Coal.+AMPT)
- T. Reichert, J. Steinheimer et al, arXiv:2210.11876(2022) (UrQMD, Thermal-FIST)

- Data show a hint of an increasing trend from $\sqrt{s_{NN}}$ = 3.0 GeV to 2.76 TeV
- For coalescence models, the energy dependence is sensitive to the source radius (Δr)
- Thermal-FIST, which includes feed-down to p and ${}^{3}\text{He}$ from unstable nuclei, describes the S_{3} data reasonably well

Summary

Presented measurements on hypernuclei production in the high-baryon-density region with

Xiujun Li, ATHIC 2023

Outlook

• e.g.
$${}^{4}_{\Lambda\Lambda}\text{He} \rightarrow {}^{4}_{\Lambda}\text{He}\pi, {}^{5}_{\Lambda\Lambda}\text{He} \rightarrow {}^{5}_{\Lambda}\text{He}\pi$$

14.6

Coalesc. (JAM)

30

- PHQMD

Outlook

• e.g.
$${}^{4}_{\Lambda\Lambda}\text{He} \rightarrow {}^{4}_{\Lambda}\text{He}\pi, {}^{5}_{\Lambda\Lambda}\text{He} \rightarrow {}^{5}_{\Lambda}\text{He}\pi$$

