#### Article

# **Excitation function of freeze-out parameters in Nucleus-Nucleus and proton-proton collisions at the same collision energy**

Murad Badshah<sup>1</sup>, Abd Haj Ismail<sup>2,3,\*</sup>, Muhammad Ajaz<sup>1</sup>, Mateen Ullah Mian<sup>4</sup>, Elmuez A. Dawi<sup>2,3</sup>, Muhammad Adil Khan<sup>4</sup>, Atef AbdelKader<sup>2,3</sup>

In case, the hard process ( $p_T < 3 \text{ GeV/c}$ ) is taken into account, then the power law distribution is found to be more prominent and is given as

$$f(p_T) = \frac{1}{N} \frac{dN}{dp_T} = A p_T \left( 1 + \frac{p_T}{p_0} \right)^{-n},$$
(4)

87

Where *A* denotes the normalization constant and *n* and  $p_0$  are the free parameters. We can use the superposition principle when the hard scattering is involved which is as

$$f(p_T) = \frac{1}{N} \frac{dN}{dp_T} = k f_S(p_T) + (1 - k) f_H(p_T).$$
 (5)

Where  $f_H$  and  $f_S$  represent soft and hard processes and k is the contribution fraction of the soft process to the hard process. More parameters, better fitting results, consistent phenomenological concepts Neither part is linear, especially the hard processes (QM ~ linear; QFT1~ non)

#### Fit results (Fig.1, Fig.2, Tab.1)



Table 1. Values of free parameters T and  $q_r N_{0r} < p_T >$  and  $\chi^2 /$  NDF extracted from the Tsallis-Pareto type function given in Eq.3

| Collision | Particle  | Centrality | Scaling factor  | T [GeV]           | q                 | < <i>p</i> <sub>T</sub> > [GeV/c] | No              | $\chi^2/NDF$ |
|-----------|-----------|------------|-----------------|-------------------|-------------------|-----------------------------------|-----------------|--------------|
| Fig.1     |           | 0-5%       | 105             | $0.120 \pm 0.005$ | 1.093±0.003       | 0.248±0.013                       | 18002.8±500     | 21.146/25    |
| Au-Au     |           | 5-10%      | 104             | $0.120 \pm 0.005$ | 1.093±0.003       | 0.248±0.013                       | 15202.8±200     | 21.920/25    |
| 200 GeV   |           | 10-15%     | 103             | $0.120 \pm 0.005$ | $1.093 \pm 0.003$ | 0.248±0.013                       | 12912.8±150     | 23.199/25    |
|           |           | 15-20%     | 10 <sup>2</sup> | $0.120 \pm 0.005$ | $1.093 \pm 0.003$ | 0.248±0.013                       | 10932.7±150     | 26.539/25    |
|           |           | 20-30%     | 10              | $0.120 \pm 0.005$ | 1.093±0.003       | $0.248 \pm 0.013$                 | 8132.8±140      | 35.312/25    |
|           | $\pi^+$   | 30-40%     | 1               | 0.120±0.005       | $1.093 \pm 0.003$ | 0.248±0.013                       | 5842.5±120      | 83.160/25    |
|           |           | 40-50%     | 10-1            | $0.120 \pm 0.005$ | 1.093±0.003       | 0.248±0.013                       | 3472.9±100      | 61.810/25    |
|           |           | 50-60%     | 10-2            | $0.110 \pm 0.004$ | $1.110 \pm 0.004$ | $0.232 \pm 0.012$                 | 2079.8±90       | 17.099/25    |
|           |           | 60-70%     | $10^{-3}$       | $0.103 \pm 0.004$ | $1.118 \pm 0.004$ | $0.220 \pm 0.012$                 | $1160.8 \pm 30$ | 9.500/25     |
|           |           | 70-80%     | 10-4            | 0.093±0.003       | $1.125 \pm 0.005$ | $0.200 \pm 0.011$                 | 604.9±10        | 5.473/25     |
|           |           | 80-92%     | 10-5            | $0.081 \pm 0.003$ | $1.135 \pm 0.005$ | 0.176±0.009                       | 396.5±5         | 15.930/25    |
| Fig.1     |           | 0-5%       | 105             | $0.120 \pm 0.005$ | 1.093±0.003       | 0.248±0.013                       | 18002.8±500     | 25.491/25    |
| Au-Au     |           | 5-10%      | 104             | $0.120 \pm 0.005$ | $1.093 \pm 0.003$ | 0.248±0.013                       | 15202.8±200     | 27.524/25    |
| 200 GeV   |           | 10-15%     | 103             | $0.120 \pm 0.005$ | 1.093±0.003       | 0.248±0.013                       | 12912.8±150     | 32.500/25    |
|           |           | 15-20%     | 10 <sup>2</sup> | $0.120 \pm 0.005$ | 1.093±0.003       | 0.248±0.013                       | 10932.7±150     | 33.872/25    |
|           |           | 20-30%     | 10              | $0.120 \pm 0.005$ | 1.093±0.003       | 0.248±0.013                       | 8132.8±140      | 37.682/25    |
|           | $\pi^{-}$ | 30-40%     | 1               | $0.120 \pm 0.005$ | $1.093 \pm 0.003$ | 0.248±0.013                       | 5642.5±120      | 77.190/25    |
|           |           | 40-50%     | $10^{-1}$       | $0.120 \pm 0.005$ | $1.093 \pm 0.003$ | 0.248±0.013                       | 3372.9±100      | 63.068/25    |
|           |           | 50-60%     | 10-2            | $0.110 \pm 0.004$ | $1.110 \pm 0.004$ | 0.232±0.012                       | 2079.8±90       | 19.137/25    |
|           |           | 60-70%     | 10-3            | $0.103 \pm 0.004$ | $1.118 \pm 0.004$ | 0.220±0.012                       | $1160.8 \pm 30$ | 10.345/25    |
|           |           | 70-80%     | 10-4            | 0.093±0.003       | $1.125 \pm 0.005$ | $0.200 \pm 0.011$                 | 604.9±10        | 4.824/25     |
|           |           | 80-92%     | 10-5            | 0.081±0.003       | 1.135+0.005       | 0.176+0.009                       | 396.5±5         | 27.306/25    |
| Fig. 1    |           | 0-5%       | 105             | $0.199 \pm 0.006$ | 1.060±0.003       | 0.399±0.020                       | 1880.8±90       | 40.931/13    |
| Au-Au     |           | 5-10%      | 104             | $0.199 \pm 0.006$ | $1.060 \pm 0.003$ | $0.399 \pm 0.020$                 | 1540.7±70       | 23.196/13    |
| 200 GeV   |           | 10-15%     | 103             | $0.199 \pm 0.006$ | $1.060 \pm 0.003$ | 0.399±0.020                       | 1290.8±50       | 18.055/13    |
|           |           | 15-20%     | 102             | $0.199 \pm 0.006$ | $1.060 \pm 0.003$ | 0.399±0.020                       | 1060.8±30       | 17.045/13    |
|           |           | 20-30%     | 10              | $0.199 \pm 0.006$ | $1.060 \pm 0.003$ | 0.399±0.020                       | 779.9±20        | 21.988/13    |
|           | $K^+$     | 30-40%     | 1               | $0.199 \pm 0.006$ | $1.060 \pm 0.003$ | $0.399 \pm 0.020$                 | 495.8±10        | 30.512/13    |
|           |           | 40-50%     | 10-1            | $0.199 \pm 0.006$ | $1.060 \pm 0.003$ | $0.399 \pm 0.020$                 | 291.5±7         | 79.333/13    |
|           |           | 50-60%     | 10-2            | 0.175±0.004       | $1.070 \pm 0.004$ | 0.360±0.018                       | 189.1±7         | 43.277/13    |
|           |           | 60-70%     | 10-3            | $0.160 \pm 0.004$ | $1.081 \pm 0.005$ | 0.337±0.018                       | 98.9±4          | 69.408/13    |
|           |           | 70-80%     | 10-4            | $0.155 \pm 0.003$ | 1.111±0.006       | 0.336±0.017                       | 41.9±2          | 14.914/13    |
|           |           | 80-92%     | 10-5            | $0.139 \pm 0.003$ | $1.122 \pm 0.007$ | 0.310±0.016                       | 23.8±1          | 18.862/13    |
| Fig. 1    |           | 0-5%       | 105             | $0.199 \pm 0.006$ | $1.070 \pm 0.003$ | 0.402±0.020                       | 1740.7±80       | 18.282/13    |
| Au-Au     |           | 5-10%      | 104             | $0.199 \pm 0.006$ | $1.070 \pm 0.003$ | $0.402 \pm 0.020$                 | $1440.7\pm50$   | 16.330/13    |
| 200 GeV   |           | 10-15%     | 103             | $0.199 \pm 0.006$ | $1.070 \pm 0.003$ | $0.402 \pm 0.020$                 | $1180.8 \pm 30$ | 16.330/13    |
|           |           | 15-20%     | 102             | $0.199 \pm 0.006$ | $1.070 \pm 0.003$ | $0.402 \pm 0.020$                 | 971.6+15        | 25.125/13    |
|           |           | 20-30%     | 10              | $0.199 \pm 0.006$ | $1.070 \pm 0.003$ | $0.402 \pm 0.020$                 | 719.8±10        | 27.379/13    |
|           | K-        | 30-40%     | 1               | $0.199 \pm 0.006$ | $1.070 \pm 0.003$ | $0.402 \pm 0.020$                 | 453.8±7         | 71.082/13    |
|           |           | 40-50%     | 10-1            | $0.199 \pm 0.006$ | $1.070 \pm 0.003$ | $0.402 \pm 0.020$                 | 266.6±6         | 99.387/13    |
|           |           | 50-60%     | 10-2            | $0.175 \pm 0.004$ | $1.080 \pm 0.004$ | $0.363 \pm 0.018$                 | 174.2+4         | 22.910/13    |
|           |           | 60-70%     | 10-3            | 0.160+0.004       | $1.088 \pm 0.005$ | $0.339 \pm 0.018$                 | 897+37          | 88.802/13    |
|           |           | 70-80%     | 10-4            | 0.155+0.003       | 1.111+0.006       | 0.336+0.017                       | 40.9+2          | 14.391/13    |
|           |           | 80-92%     | 10-5            | 0.139+0.003       | $1.122 \pm 0.007$ | 0.310+0.016                       | 23.1+1          | 17.794/13    |
| Fig. 1    |           | 0-5%       | 105             | 0.291+0.007       | $1.011 \pm 0.003$ | $0.586 \pm 0.029$                 | 471.8+20        | 78.267/19    |
| Au-Au     |           | 5-10%      | 104             | $0.291 \pm 0.007$ | 1.011+0.003       | 0.586+0.029                       | 394.8+15        | 59.704/19    |
| 200 GeV   |           | 10-15%     | 103             | 0.291+0.007       | $1.011 \pm 0.003$ | 0.586+0.029                       | 325.9+13        | 39.207/19    |
| 200 001   |           | 15-20%     | 102             | 0 291+0 007       | 1.011+0.003       | 0.586+0.029                       | 270 3+10        | 31 674/19    |
|           |           | 20-30%     | 10              | 0.291+0.007       | 1.011+0.003       | 0.586+0.029                       | 202.2+7         | 33.076/19    |
|           | D         | 30-40%     | 1               | 0 291+0.007       | 1.011+0.003       | 0.586+0.029                       | 130.3+5         | 56.559/19    |
|           | P         | 40-50%     | 10-1            | $0.291 \pm 0.007$ | $1.011 \pm 0.003$ | 0.586+0.029                       | 76 3+3          | 137.801/19   |
|           |           | 50-60%     | 10-2            | 0 240+0 005       | $1.041 \pm 0.003$ | 0 513+0.026                       | 54 3+2          | 10 924/19    |
|           |           | 60-70%     | 10-3            | 0 210+0 004       | 1.071+0.004       | 0.472+0.024                       | 31 1+1 5        | 5 877/19     |
|           |           | 70.80%     | 10-4            | 0 180+0.003       | 1 089+0 005       | 0.420+0.022                       | 161-06          | 7 078 /19    |
|           |           | 80.92%     | 10-5            | 0.151+0.003       | 1 105+0 007       | 0 381+0 019                       | 91+04           | 7 293/19     |
| Fig 1     |           | 0.5%       | 105             | 0.291+0.007       | 1011+0.002        | 0.586+0.029                       | 345 8+17        | 127 757 /10  |
| Aug. I    |           | 5-10%      | 104             | 0.291±0.007       | 1011±0.003        | 0.586+0.029                       | 201 8+12        | 105 070 /19  |
| 200 Cal   |           | 10.15%     | 103             | 0.291±0.007       | 1.011±0.003       | 0.566±0.029                       | 242 8.11        | 75 153 /10   |
| 200 Gev   |           | 15 20%     | 102             | 0.291±0.007       | 1.011±0.003       | 0.566±0.029                       | 242.8±11        | 73.133/19    |
|           |           | 20.20%     | 10-             | 0.291±0.007       | 1.011±0.003       | 0.586±0.029                       | 202.8±10        | 59./18/19    |
|           | 0         | 20-30%     | 10              | 0.291±0.007       | 1.011±0.003       | 0.586±0.029                       | 140.3±/         | 60 226 /19   |
|           | p         | 40 50%     | 10-1            | 0.291±0.007       | 1.011±0.003       | 0.566±0.029                       | 90.1±3          | 127 020 /10  |
|           |           | 40-50%     | 10 .            | 0.291±0.007       | 1.011±0.003       | 0.586±0.029                       | 57.0±2          | 127.930/19   |
|           |           | 50-60%     | 10-1            | 0.240±0.005       | 1.041±0.003       | 0.513±0.026                       | 41.0±1.3        | 9.229/19     |
|           |           | 00-70%     | 10-3            | 0.210±0.004       | 1.0/1±0.004       | 0.4/2±0.024                       | 28.0±1          | 6.521/19     |
|           |           | /U-80%     | 10              | 0.180±0.003       | 1.089±0.005       | 0.430±0.026                       | $11.1\pm0.4$    | 12.705/19    |
|           |           | 00 0001    | 20-5            | 0.151 0.000       | 1 105 0 005       | 0.201 0.010                       | 71.77           | 10.1.10.10.  |

|         |   | 0 =0/  | 102       | 0.000 0.000       | 1 000 0 000       | 0 (00 0 001       |
|---------|---|--------|-----------|-------------------|-------------------|-------------------|
| F1g. 1  |   | 0-5%   | 10-       | $0.300 \pm 0.009$ | $1.009 \pm 0.003$ | $0.622 \pm 0.031$ |
| Au-Au   |   | 10-20% | 10        | $0.300 \pm 0.009$ | $1.009 \pm 0.003$ | $0.622 \pm 0.031$ |
| 200 GeV | Λ | 20-40% | 1         | $0.300 \pm 0.009$ | $1.009 \pm 0.003$ | $0.622 \pm 0.031$ |
|         |   | 40-60% | $10^{-1}$ | $0.291 \pm 0.008$ | $1.019 \pm 0.004$ | $0.611 \pm 0.031$ |
|         |   | 60-80% | $10^{-2}$ | $0.233 \pm 0.006$ | $1.055 \pm 0.005$ | $0.522 \pm 0.026$ |

| Collision | Particle                    | Centrality | Scaling factor | T [GeV]           | q                 | $< p_T > [GeV/c]$ |
|-----------|-----------------------------|------------|----------------|-------------------|-------------------|-------------------|
| Fig. 1    |                             | 0-5%       | $10^{2}$       | $0.300 \pm 0.009$ | $1.009 \pm 0.003$ | $0.622 \pm 0.031$ |
| Au-Au     |                             | 10-20%     | 10             | $0.300 \pm 0.009$ | $1.009 \pm 0.003$ | $0.622 \pm 0.031$ |
| 200 GeV   | $\bar{\Lambda}$             | 20-40%     | 1              | $0.300 \pm 0.009$ | $1.009 \pm 0.003$ | $0.622 \pm 0.031$ |
|           |                             | 40-60%     | $10^{-1}$      | $0.291 \pm 0.008$ | $1.019 \pm 0.004$ | $0.611 \pm 0.031$ |
|           |                             | 60-80%     | $10^{-2}$      | $0.233 \pm 0.006$ | $1.055 \pm 0.005$ | $0.522 \pm 0.026$ |
| Fig. 1    |                             | 0-5%       | $10^{2}$       | $0.317 \pm 0.010$ | $1.007 \pm 0.003$ | $0.675 \pm 0.034$ |
| Au-Au     |                             | 10-20%     | 10             | $0.317 \pm 0.010$ | $1.007 \pm 0.003$ | $0.675 \pm 0.034$ |
| 200 GeV   | $\Xi^{-}$                   | 20-40%     | 1              | $0.317 \pm 0.010$ | $1.007 \pm 0.004$ | $0.675 \pm 0.034$ |
|           |                             | 40-60%     | $10^{-1}$      | $0.310 \pm 0.009$ | $1.009 \pm 0.005$ | $0.665 \pm 0.033$ |
|           |                             | 60-80%     | $10^{-2}$      | $0.288 \pm 0.008$ | $1.039 \pm 0.006$ | $0.637 \pm 0.032$ |
| Fig. 1    |                             | 0-5%       | $10^{2}$       | $0.317 \pm 0.010$ | $1.007 \pm 0.003$ | $0.675 \pm 0.034$ |
| Au-Au     |                             | 10-20%     | 10             | $0.317 \pm 0.010$ | $1.007 \pm 0.003$ | $0.675 \pm 0.034$ |
| 200 GeV   | Ē+                          | 20-40%     | 1              | $0.317 \pm 0.010$ | $1.007 \pm 0.003$ | $0.675 \pm 0.034$ |
|           |                             | 40-60%     | $10^{-1}$      | $0.310 \pm 0.009$ | $1.009 \pm 0.004$ | $0.665 \pm 0.033$ |
|           |                             | 60-80%     | $10^{-2}$      | $0.288 \pm 0.008$ | $1.039 \pm 0.005$ | $0.637 \pm 0.032$ |
| Fig. 1    |                             | 0-5%       | 10             | $0.340 \pm 0.011$ | $1.005 \pm 0.003$ | $0.756 \pm 0.038$ |
| Au-Au     | $\Omega^- + \bar{\Omega}^+$ | 20-40%     | 1              | $0.340 \pm 0.011$ | $1.005 \pm 0.003$ | $0.756 \pm 0.038$ |
| 200 GeV   |                             | 40-60%     | $10^{-1}$      | $0.326 \pm 0.010$ | $1.020 \pm 0.004$ | $0.740 \pm 0.037$ |





- L138 "more collision energy is deposited in a larger volume rather than higher temperature" (40-50% to the most central collisions show a smooth behavior for T. It tends to be in thermal equilibrium and reaches a maximum temperature in 40-50%)
- pT~(0,3) hadronization together for pi/k/p, so in principle fit simultaneously(In particular, it is necessary to obtain changes with the center, and the control variable method should also be fitted simultaneously). If perform fits like this, then the above can be drawn for AuAu and PbPb systems and correspond energies.
- T extracted from pion spctra is consistent between auau and pbpb, soft hadrons can directly flect system evoluation. However, the other particle cases are significantly larger in PbPb than in AuAu.

## "The region from 0 - 40% centrality is meson dominated region where QGP is produced while the region beyond this to the most periphery is baryon dominated."

(pion+) 2.18+ 1.36+ 8.36E-01+ 5.29E-+01+ 3.51E-01+ 2.21E-01+ 1.51E-01+ 1.10E-01+ 7.17

(pion-) 2.16E+00+ 1.30E+00+ 8.30E-01+ 5.26E-01+ 3.45E-01+ 2.32E-01+ 1.47E-01+ 1.05E-

(k+) 4.81E-01+ 3.40E-01+ 2.33E-01+ 1.69E-01+ 1.19E-01+ 7.84E-02+ 5.43E-02+ 3.85E-02

(k-) 4.43E-01+ 3.16E-01+ 2.31E-01+ 1.56E-01+ 1.09E-01+ 7.06E-02+ 5.72E-02+ 3.67E-02+ 2.38E-02

(p+) 2.04E-01+ 1.65E-01+ 1.27E-01+ 1.00E-01+ 7.43E-02+ 5.88E-02+ 3.98E-02+ 3.41E-02+ 2.41E-02 (p-) 1.58E-01+ 1.25E-01+ 9.50E-02+ 7.38E-02+ 5.50E-02+ 4.34E-02+ 3.19E-02+ 2.40E-02+ 1.90E-02 (60-70% pT~(0.6, 1.5))

(60-80%) ( $\land$  |y|<1) 0.168534+0.143039+0.082781+0.0542705+0.0333924+ 0.0199942

**Figure 1.** Plots (a) - (k) represent the event centrality-dependant double differential  $p_T$  spectra of identified particles at |y| < 0.35 measured by PHENIX Collaboration at RHIC [51] and strange, at |y| < 1 for  $\Lambda$  and  $\overline{\Lambda}$  and |y| < 0.5 for  $\Xi$ ,  $\overline{\Xi}$  and  $\Omega^- + \overline{\Omega}^+$  measured by STAR at RHIC [52] hadrons at  $\sqrt{s} = 200$  GeV in Au-Au collision. The data for these particles have been analyzed at all available centrality events indicated in each plot. Different symbols with different colors are used for different centralities, while the solid lines are the results of our fit by using Eq. 3. Each plot has the Data/Fit ratio at its bottom, which shows the fit quality.



FIG. 1 (color online). Transverse momentum distributions of (a)  $\Lambda(\bar{\Lambda})$  for |y| < 1.0, (b)  $\Xi^{-}(\bar{\Xi}^{+})$  for |y| < 0.75, and (c)  $\Omega^{-} + \bar{\Omega}^{+}$  for |y| < 0.75 in Au + Au collisions at  $\sqrt{s_{NN}} =$ 200 GeV as a function of centrality. Scale factors were applied to the spectra for clarity. Only statistical errors are shown. The dashed curves show a Boltzmann fit to the  $\Lambda$ ,  $\Xi^{-}$ , and  $\Omega^{-} + \bar{\Omega}^{+}$  data; the fits to the  $\bar{\Lambda}$  and  $\bar{\Xi}^{+}$  are omitted for clarity.





L139-145

### Line 176

From the above results, we also reported that  $T_{,} < p_{T} >$  and  $N_{0}$  are dependent on the size of the system. Larger the system, the larger they are. As a larger collision system has large participants involved in the interaction, it experiences an intense reaction, where more energy is deposited in the system, which corresponds to a large transfer of momentum in the system which naturally leads the system to be highly excited, and due to large transfer of energy (momentum), further multiple scattering happens and results in larger  $N_{0}$  (multiplicity).



- ➢ Fig.7 does not appear in the text
- Kinematic Freeze-out Temperature is different between previous results.
- T is different from temperature in Boltzmann's thermodynamic statistics. How does the *T<sub>thermal</sub>* depend on centrality classes?





**Figure 7.** Dependence of (a)  $< T_0 >$  and (b)  $< \beta_T >$  on centrality in Au-Au and Pb-Pb collisions respectively.

#### Gábor Bíró et al 2020 J. Phys. G: Nucl. Part. Phys. 47 105002

$$T = T_{fro} + m \left\langle u_t \right\rangle^2,\tag{33}$$

where  $T_{fro}$  is the hadron kinetic freeze-out temperature and  $\langle u_t \rangle$  is the measure of the strength of the average radial transverse flow, which is connected to the averaged transverse velocity via

$$\langle v_t \rangle = \frac{\langle u_t \rangle}{\sqrt{1 + \langle u_t \rangle^2}}.$$
(34)

$$T_{thermal} = T \sqrt{\frac{1 - v_t}{1 + v_t}}$$
<sup>7</sup>

#### Some other conflicts

work. But to show the extraction of the kinetic freeze-out temperature  $T_0$  and transverse flow velocity  $\beta_T$  from T, we took the particles with same centrality and extracted the two 211

| The follow    | ving abbreviations are used in this manuscript: | 258 |
|---------------|-------------------------------------------------|-----|
| $p_T$         | transverse momentum                             |     |
| $T_{eff}$     | kinetic freeze-out temperature                  |     |
| $< T_{eff} >$ | effective temperature                           |     |
| $\beta_T$     | transverse flow velocity                        |     |
| $<\beta_T>$   | average transverse flow velocity                | 259 |

from these systems. The present work extracts the effective temperature *T*, non-extensivity parameter (*q*), the mean transverse momentum spectra ( $< p_T >$ ), the multiplicity parameter ( $N_0$ ), kinetic freeze-out temperature ( $T_0$ ) and transverse flow velocity ( $\beta_T$ ). We reported a plateau structure of  $p_T$ , 7