

Updates on $\psi(2S)$ to J/ ψ ratio in pp collisions 13.6 TeV at midrapidity

Yuan Zhang

Datasets

run number

Analysis cuts

 \succ Event selection: ➤-10 cm < VtxZ < 10 cm</p> \succ Track selection: ▶pT >1 GeV/c **≻** |η| < 0.9 ➤TPCncls > 90 ➤TPCchi2 < 4</p> >ITSncls > 2 ➢ITSchi2 < 36</p> ➢SPDany

> PID: > $-3 < \text{TPC}n\sigma^e < 3$ > $\text{TPC}n\sigma^p > 3$ > $\text{TPC}n\sigma^\pi > 3$

Event selection

> 39.17 B events after selection

Kinematics distribution

Track quality

Mix event check

MixingDepth: 25

- MixingVars: Vtx2
 - VtxZ(cm): (-10, -5, 0, 5, 10)

> The ratio of same event like-sign pair and mix event like-sign has some mass dependence.

Mix event check

Mix event check

The influence of the fit range will be shown later.

> The reason for the mass dependence still need further check.

Signal extraction

- Using mix-event unlike-sign pair to subtract the combination background.
- Scale factor is calculated from integral of same-event like-sign divided by the mix-event like-sign.
- The default mass window(GeV/c²) is
 - ➤ (2.84, 3.2) for J/ψ
 - ➤ (3.44, 3.8) for ψ(2s)
- The default fit range(GeV/c²) is (1.4, 4.2)

Some source of the systematic uncertainty of the ratio of production

- ➤Mass window
- ➢Fit range
- Background fit function
- ➤Tracking and PID efficiency
- ➤Tracking and PID cuts

- Standard fit range(GeV/c²): 1.4 4.2
- Standard bkg fit function: exp

- Standard mass window(GeV/c²): (2.84, 3.2) for J/ ψ , (3.44, 3.8) for ψ (2s).
- > Standard fit range(GeV/ c^2): 1.4 4.2
- Standard bkg fit function: exp

 \triangleright exp_p0: $Ae^{Bx} + C$

 \blacktriangleright exp_p1: $Ae^{Bx} + C + Dx$

The influence of the efficiency

> The single track efficiency is obtained from Run2 MC, and is passing to J/ψ and $\psi(2s)$ using toyMC.

> The difference of the efficiency between J/ ψ and $\psi(2s)$ is large in low p_T , but will get small in high p_T .

The influence of the efficiency

 \succ The difference of efficiency between $\psi(2s)$ and $J/(\psi)$ is ~25% in integrated p_T range.

The influence of the efficiency

> The difference of efficiency between $\psi(2s)$ and J/ ψ will reduce to ~0.5% when we take $p_T > 3$ GeV/c.

Summary

➢Only ~7% of the total statistics are used for now. Xiaozhi is working on producing reduced tree.

➤The mix event method is used for signal extraction, and the significance is improved. But the matching between mix event and same event is not very good, and it will be checked.

Some source of systematic uncertainty are studied, and the study on other part of systematic uncertainty is ongoing.

