Update on (Anti-)H3L Yield in Isobar Collisions at 200 GeV

Dongsheng Li

Outline

- Lambda Yield
 - Reconstruction
 - Variations for systematic error
 - Reconstruction methods
 - Efficiency
 - Checks
 - Spectra

	Analysis cuts	default	var1	var2	
Event selection:	Chi2topo	<=4.5	<=4.5	<=4.5	
 Vz [-35,25], Vz-VpdVz < 3 good run 	Chi2ndf	<=5	<=5	<=5	
 pile-up rejection 	Chi2primary_pi	>=11	>=10	>=12	
• Apply centrality weight (StRefMultCorr from Kaifeng and Yan)	LdI	>=4.5	>=4.5	>=4.5	
0-80% ~2e8 ~1e8	L	>=1.5	>=1.	>=2	
Track quality:	Nhits	>= 17	>= 15	>= 20	
• Daughter $pT > 0.1$, eta [-1.5,1.5]	lifetime		>0	>0	
 Nhitsdedx>=5, nhits >=15, nhitsfit/nhitsmax>0.52 Dedxerror [0.01,0.25] 					
	Signal Extraction	default	var1	var2	
	Mass window	3-sigma	4-sigma	5-sigma	
T0 from iteration:					
Fit spectra with Boltzmann function	MC weight	default	var1	var2	
 Fit the corrected spectra again 	Boltzmann T (MeV)	то	T0-20	T0+20	
 …(loop a few times) Get T0 and its uncertainty eT (for lambda eT is ~1e-3 MeV; so we vary T0 with 20 MeV) 				3	

- Rotational background (pion, 180 degrees)
- For each centrality, get normalization factor of Rot_BG with sideband [1.08,1.09]
- For each centrality and pT bin, Fit the linear residual:
 - RES = FG-Rot_BG, remove its bin-contents within 7 sigma of the signal peak
- Get spectra by counting bin-contents, SIG = FG-BG-RES in signal region (3/4/5 sigma)

~4 times Lambda raw counts compared to Lambda_bar

For invariant yield we expect Lambda twice larger than Lambda_bar, if we have similar efficencies

Normalization in each centrality for lambda / lambda_bar

- Acceptance
 - We will report yield within y[-0.8,0.8] x pT [0.8,4]

- MC before weighting
 - pT,y flat

- MC before weighting
 - Reco-distribution with pre-cuts for mc mini-tree

- Reco-distribution
- Pre-cuts for the mini-tree:
 - Decay length > 1 cm
 - LdL > 1 cm
 - Chi2ndf < 10
 - Chi2primary_pi > 3
 - Nhits > 15
- A negative lifetime ?

ld_lifetime = tempSIMDParticle.GetLifeTime()[0];

- pT&y weighted
- reco-data and reco-mc almost consistent

- pT&y weighted
- reco-data and reco-mc almost consistent

0-80% Lambda_bar are shown, Lambda very similar to Lambda_bar

- Efficiencies for Lambda and Lambda_bar are calculated, respectively
 - Similar efficiency, so we will expect invariant yield --- Lambda ~ 2 * Lambda_bar
- At high pT, efficiency will drop because the mass width depends on pT
 - If remove mass cut, will be much more flat
 - Black line(3-sigma mass cut from pT integrated 0-80 spectra) will cut off more Lambda at higher pT
 - Red line, a possible substitute (3-sigma mass cut if we look at each pT slice from 0-80%), not tried yet
- A larger embedding sample produced
 - Can read it to produce another mini-tree

Lambda Spectra

- We fill all histograms again. Weight = the pT-dependent efficiency inverse x centrality reweight
- Lambda_bar spectra now corrected with Lambda_bar embedding
- Fitted with blast-wave function
- Junlin also sees Lambda ~ 2 * Lambda_bar in Au+Au 200 GeV (3.2 million)

 $-\overline{\Lambda}$

Λ

Lambda Spectra

- Systematic error components (how to illustrate? Too many bins)
 - Barlow test (MC weighting never passed barlow test, so not used for this source)
 - Estimated with 0-80%, Lambda & Lambda_bar
 - Topo cuts/tracking/signal extraction
 - Centrality by centrality
 - Boltzmann weight on MC kinematics

Eliminate errors due to statistical fluctuations:

Difference between default value and variation cut value:

 $\Delta = |\tau_{default} - \tau_{variation}|$ Statistic error on the difference:

$$\begin{split} \sigma_{\Delta} &= \sqrt{|\sigma_{default}^2 - \sigma_{variation}^2|} \\ \mathrm{lf}(\Delta > \sigma_{\Delta}), \mathrm{systematic\ err:}\ \sigma_{sys} &= \sqrt{\Delta^2 - \sigma_{\Delta}^2} \end{split}$$

pm	0 80	No.1 Bin	sys ana cuts:	0.02343 tracking	0.009764	sys mass window 0.004407	р	0_80	input MC	0.001089	total	0.02578
pm	080	No.2 Bin	sys ana cuts:	0.0186 tracking	0.006764	sys mass window 0.006264	р	0_80	input MC	0.0006222	total	0.02077
pm	0_80	No.3 Bin	sys_ana_cuts:	0.01903 tracking	0.007303	sys mass window 0.008851	p	0_80	input MC	0.0004114	total	0.02222
pm	080	No.4 Bin	sys ana cuts:	0.02022 tracking	0.00687 sys mas	ss window 0.009858	p	0_80	input MC	0.0002996	total	0.02352
pm	080	No.5 Bin	sys ana cuts:	0.01942 tracking	0.007102	sys mass window 0.01122	p	0 80	input MC	0.0002388	total	0.02353
pm	080	No.6 Bin	sys ana cuts:	0.02183 tracking	0.007252	sys mass window 0.01335	p	0_80	input MC	0.0001687	total	0.02659
pm	0_80	No.7 Bin	sys_ana_cuts:	0.02161 tracking	0.006487	sys_mass_window 0.0155	p	0_80	input MC	0.0001101	total	0.02738
pm	0_80	No.8 Bin	sys_ana_cuts:	0.02298 tracking	0.006242	sys_mass_window 0.01719	p	0_80	input MC	0.0001077	total	0.02937
pm	0_80	No.9 Bin	sys_ana_cuts:	0.02357 tracking	0.006175	sys_mass_window 0.02097	р	0_80	input MC	2.318e-05	total	0.03214
pm	0_80	No.10 Bin	sys_ana_cuts:	0.02583 tracking	0.005694	sys_mass_window 0.02225	p	0_80	input MC	8.301e-06	total	0.03456
pm	0_80	No.11 Bin	sys_ana_cuts:	0.02608 tracking	0.005278	sys_mass_window 0.02517	p	0_80	input MC	6.377e-05	total	0.03663
pm	0_80	No.12 Bin	sys_ana_cuts:	0.02582 tracking	0.004077	sys_mass_window 0.02775	p.	080	input MC	7.319e-05	total	0.03812
pm	0_80	No.13 Bin	sys_ana_cuts:	0.02561 tracking	0.004681	sys_mass_window 0.02977	p.	0_80	input MC	6.94e-05	total	0.03955
pm	0_80	No.14 Bin	sys_ana_cuts:	0.02547 tracking	0.003935	sys_mass_window 0.03011	p	0_80	input MC	0.0001435	total	0.03964
pm	0_80	No.15 Bin	sys_ana_cuts:	0.0262 tracking	0.004651	sys_mass_window 0.03265	p	0 80	input MC	0.000198	total	0.04212
pm	0 80	No.16 Bin	sys ana cuts:	0.02449 tracking	0.003914	sys mass window 0.03299	b	0 80	input MC	0 0001559	total	0 04127