中国科学技术大学博士学位论文开题报告

Measurements of inclusive D^0 -meson production in isobar collisions at $\sqrt{s_{NN}} = 200$ GeV

Yuan Su (苏源) BA21004043

Dept. of Modern Physics

Major: Particle and Nuclear Physics

PhD Supervisor: Yifei Zhang

Jul. 20th, 2023

• Motivation and STAR Experiment

Energy loss

- Measurements of $D^0 p_T$ spectra and R_{AA} in isobar collisions at $\sqrt{s_{NN}} = 200$ at RHIC
- Collectivity (检查v2的分辨率修正及3 GeV以上信号提取)
 - Measurement of D^0 elliptic flow v_2 at mid-rapidity in isobar collisions

• Research plan

Summary

• Motivation and STAR Experiment

Energy loss

- Measurements of $D^0 p_T$ spectra and R_{AA} in isobar collisions at $\sqrt{s_{NN}} = 200$ at RHIC

Collectivity

- Measurement of D^0 elliptic flow v_2 at mid-rapidity in isobar collisions
- Research plan

Summary

Relativistic Heavy Ion Collision

- QGP is the hottest (~ 10^{12} K), smallest, and the most perfect fluid (0.08~0.2 \hbar/k_B) in nature! - Jets, Heavy flavor energy loss, Flows ...
- Hypernuclei(${}^{4}_{\Lambda}H$, ${}^{4}_{\Lambda}He$) binding energies are one of the key ingredients needed to understand the composition of the neutron stars.
- Initial electromagnetic field ($|\vec{B}| \sim 10^{15}$ T) provide an opportunity to test QED under extreme conditions.

100 km

LHC

27 km

7/20/2023

Open heavy-flavour produciton

< 1 fm/c, initial partonic hard scattering

 $m_c > \Lambda_{QCD}$, an ideal probe with a high probability of penetrating QGP

 $\sim 350~\mu m,$ vertex resolution with more than 1000 tracks, by TPC; the precise 1/ß extends PID power, TOF

Open heavy-flavour production plays a unique role in heavy-ion physics:

- Production restricted to early collision stages (mainly gluon fusion) and retain a "memory" of their evolution through the QGP
- Consistent with the theoretical calculation (**pQCD in p+p collisions**) and partons have energy loss in the medium
 - Gluon radiation (dead cone effect; suppressed at $\theta < m_Q/E_Q$)
 - Collisional energy loss (Brownian motion)
- Heavy quarks **retain their flavour and mass identity**; can be "tagged" by the measurement of heavy-flavour hadrons

Yuan Su, Doctoral Dissertation Proposal

D^0 production cross section in p+p collisions

- pQCD calculations in p+p collisions, convolution
 - the parton distribution functions (PDFs) of the incoming protons
 - the partonic scattering cross section
 - the fragmentation function
 - 7/20/2023

- provide important constraints to pQCD calculations and to low-x gluon PDFs
- Represent an essential reference for the study of effects induced by cold and hot strongly-interacting matter

Particle specie ratios in pp, p-Pb, Au-Au and Pb-Pb

- fragmentation fractions
- hadronisation scenario (independent on system and energy)
- Universality of the fragmentation fractions for charm can not be ruled out in the meson sector.
- Λ_c/D^0 yield ratio is comparable to the baryon-to-meson ratios for light and strange-flavor hadrons
- Baryons contribute significantly to the total charm cross section
- Fragmentation fractions of charm quarks are non-universal

7/20/2023

- Measured down to $p_T = 0$ in central collisions
- A large suppression is observed at low-intermediate p_T , and it is larger for the most central class
- Bottom decay electron R_{AA} to be significantly higher than those of charm-decay electrons
- R_{AA} (gluons, u, d) < R_{AA} (c) < R_{AA} (b)

7/20/2023

Yuan Su, Doctoral Dissertation Proposal

Motivation and STAR Experiment

Energy loss

- Measurements of $D^0 p_T$ spectra and R_{AA} in isobar collisions at $\sqrt{s_{NN}} = 200$ at RHIC

Collectivity

- Measurement of D^0 elliptic flow v_2 at mid-rapidity in isobar collisions
- Research plan

Summary

• Nuclear modification factor

$$R_{AA} = \frac{d^2 N_{AA}^{D^0} / dp_T dy}{< T_{AA} > d^2 \sigma^{PP} / dp_T dy} = \frac{\sigma_{inel}^{NN} d^2 N_{AA}^{D^0} / dp_T dy}{< N_{coll} > d^2 \sigma^{PP} / dp_T dy}$$

$$R_{CP} = \frac{\mathrm{d}^2 N}{N_{\mathrm{bin}} \,\mathrm{d}p_T \,\mathrm{d}y} \big|_{\mathrm{central}} \,/\, \frac{\mathrm{d}^2 N}{N_{\mathrm{bin}} \,\mathrm{d}p_T \,\mathrm{d}y} \big|_{\mathrm{peripheral}}$$

- Suppression level comparable to that of light hadrons in 0-10%
- A significant energy loss of charm quarks in isobar collisions?
- The N_{bin} -scale effect of the $D^0 p_T$ spectra between isobar and Au-Au collisions?

 D^0

K

 W^{\cdot}

• The K, π invariant mass distribution with centrality 0-80% and p_T range 0-8 GeV/c at midrapidity.

• The mix-event method can well reproduce the combination background (solid red line).

 D⁰ signal at 0-10% (a), 10-40% (b), 40-80% (c) centrality bins with transverse momentum range 0-8 GeV/c at midrapidity.

- $\frac{d^2 N}{2\pi p_T dp_T dy} = \frac{\Delta N^{raw} / \epsilon_{D^0}^{reco} / 2}{2\pi p_T \Delta p_T \Delta y \times N_{events} \times B.R.}$
- $\epsilon_{D^0}^{reco} = \epsilon_{Accept} \times \epsilon_{TPC} \times \epsilon_{PID}$
- $\epsilon_{PID} = \epsilon_{n\sigma_X} \cdot \epsilon_{TOF} \cdot \epsilon_{n\sigma_X^{TOF}} + \epsilon_{n\sigma_X} \cdot (1 \epsilon_{TOF})$
- ΔN^{raw} : the raw yield measured in the bin $\Delta p_T \Delta y$;
- $\epsilon_{Accept} \times \epsilon_{TPC}$: TPC acceptance and tracking efficiency (embedding);
- ϵ_{PID} : particle identification efficiency (data, K_s^0 , ϕ , Λ^0).

- (a) TPC tracking efficiency for Pion
- (b) TOF matching efficiency for Pion
- (c) Pion TPC PID efficiency (black circles) and TOF PID efficiency (red circles)

7/20/2023

Systematic uncertainties

Signal extraction	TPC tracking	
> The difference between the fitting and counting methods (1.69, 2.04) GeV/ c^2 ;	DCA: 2cm (default);	
\succ The order of polynomial function to depict the residual background (Pol3);	nHitsFit: 20 (default)	
Signal fit range (1.73, 2.00) GeV/ c^2 ;	PID cuts 3%	
$\succ p_T$ cut variation for daughter particles;	● B.R. 0.5%	
Mix-event like-sign normalization factor	• p + p inelastic scattering cross section 8%	

Systematic uncertainties in D^0 analysis					
		0-10%	10-40%	40-80%	Correlation in pT
	Raw yield	11.3 - 19.6%	10.0-14.0%	8.3-11.2 %	uncorrelated
	Double counting	0.7%	0.8%	0.9%	uncorrelated
spectra	PID	3%	3%	3%	Largely correlated
	TPC	2-6%	2-6%	2-6%	Largely correlated
	B.R.	0.5%	0.5%	0.5%	global
D	<nbin></nbin>	1.6%	0.6%	0.4%	global
n_{AA}	ppbase	20.6-71.8%	20.6-71.8%	20.6-71.8%	partially correlated
		0-10%		10-40%	
Rcp	Raw yield	13.6 - 20.7%		12.4-16.5 %	uncorrelated
(/40-80%)	B.R.	0		0	global
	TPC	0		0	Largely correlated
Integrated cross		pt>0		pt > 4 GeV/c	
section	Total	12.7 - 15.8%		12.0-15.2 %	

• D^0 invariant yields at mid-rapidity (|y|<1) vs. transverse momentum for different centrality classes in isobar (solid) and Au + Au (open) collisions at $\sqrt{s_{NN}}$ = 200 GeV.

 D⁰ integrated corss sections per nucleonnucleon collision in isobar.

$$\frac{d\sigma_{D^0}^{NN}}{dy}|_{y=0} = \frac{dN_{D^0}^{AA}}{dy}|_{y=0} \times \frac{\sigma_{inel}^{pp}}{< N_{bin} >}$$

R_{AA} and R_{AA} vs. N_{part}

• $D^0 R_{AA}$ for different centrality classes in isobar collisions compared to that of Au + Au results.

• D^{0} integrated R_{AA} vs. $\langle N_{part} \rangle$ for $p_{T} > 0$ and $p_{T} > 4$ GeV/c in isobar and Au + Au collisions

• $D^0 R_{AA}$ for 0-10% in isobar collisions compared to that of Au + Au results for 10-40%.

• Due to the large uncertainty of the $D^0 p_T$ spectrum in p + p collisions at $\sqrt{s_{NN}} = 200 \ GeV$, more precise measurements are needed to determine whether the $D^0 R_{AA}$ in isobar collisions agrees with that in Au + Au collisions at the same centrality or $\langle N_{part} \rangle$.

m_T Spectra and Collectivity

• D^0 invariant yield at mid-rapidity (|y| < 1) vs. p_T for different centrality bins fitted with m_T distribution.

• T_{eff} for D^0 in central isobar collisions is consistent with that of Au + Au results. The red rhombus from left to right show the fit results of π , K, and proton in isobar collisions respectively.

- D^0 invariant yield at mid-rapidity(|y|<1) vs. p_T for different centrality bins fitted with blast-wave function.
- D^0 freeze out temperature in isobar collisions are consistent with that of in Au + Au collisions for the same centrality. The open red circles from left to right shows the result of fitting π , K, and proton simultaneously from peripheral to central collisons.

,	Tsallis	blast	-wave	model	fits	parameters	to	D^0	p_T -
fferentia	l spect	ra in	isobar	collisi	ons.				

Centrality	$\langle \beta_T \rangle$ (c)	q-1
0 - 10%	$0.282{\pm}0.018$	$0.070 {\pm} 0.007$
10 - 40%	$0.207 {\pm} 0.030$	$0.080 {\pm} 0.007$
40-80%	$0.189{\pm}0.031$	$0.089 {\pm} 0.005$

• The average flow velocity increases with central collision, and (q - 1) is also found to be close to zero.

- D^0 -meson productions are firstly measured at mid-rapidity (|y| < 1) in 200 GeV isobar collisions
- The number of binary collisions scale effect of D^0 production cross section between isobar and Au + Au collisions is observed
- The strong suppression of D^0 nuclear modification factor R_{AA} is observed for $p_T > 3$ GeV/c in central isobar collisions, demonstrating that charm quarks suffer significant energy loss in the QGP. Consistent with that in Au+Au collisions with similar multiplicities.
- No significant systematic dependence of D^0 kinetic freeze-out properties in central collisions between isobar and Au + Au collisions within uncertainties is observed.

Motivation and STAR Experiment

Energy loss

- Measurements of $D^0 p_T$ spectra and R_{AA} in isobar collisions at $\sqrt{s_{NN}} = 200$ at RHIC

Ollectivity

- Measurement of D^0 elliptic flow v_2 at mid-rapidity in isobar collisions
- Research plan

Summary

Collective flow in heavy-ion collisions

- The tilted initial condition has a smooth tilted pressure gradient that gives a negative-directed flow
- Angle-averaged anisotropic flow

7/20/2023

In-plane flow and Out-of-plane flow profile

 A tilt of the initial source in the x-η plane for direct flow

Animation for T and flow velocity in 200 GeV AuAu collisions for 20-30%

7/20/2023

Anisotropic flow

initial fluctuating geometric deformation can be decomposed into spatial eccentricities

Initial spatial eccentricities

$$\epsilon_n = \sqrt{\frac{\langle r^n \cos n\phi \rangle^2 + \langle r^n \sin n\phi \rangle^2}{\langle r^n \rangle^2}}$$

Average over energy density

 ϵ_2 ellipticity, ϵ_3 triangularity, ...

$$\frac{dN}{d\phi} = \frac{N}{2\pi} \left(1 + 2\sum_{n=1}^{\infty} v_n \cos[n(\phi - \Psi_n)] \right)$$

 $v_2 = \langle \cos[2(\phi - \Psi_2)] \rangle$

average over azimuthal distribution

 v_2 elliptic flow, v_3 triangular flow, ...

 ν_2 is dominant and quantifies the azimuthal anisothropy

A expected smaller hot nuclei systems in Isobar, so v_2 depends on the system? Charm quark gets thermalized in Isobar like in Au-Au at 200 GeV?

• The different color markers represent different number of rejected 0.1 η bins around the D^0 candidate: black: 0; red: 1; light green: 3; blue: 5...dark green: 13

• Less than 1.7 M events are used to provide analysis method check;

• A more precise comparison is needed with measured hadron v_2 result in Isobar.

• Total D^0 signal at $1.0 < p_T < 2.0$ GeV/c

v_2 correction

 $N(1+2v_2^\sim cos(2(\phi-\Psi)))$

- A scale of $\Delta/\sin\Delta = 1.01664$ is done to correct for finite bin width $\Delta = 0.1\pi$;
- The $\widetilde{v_2}$ is divided by <1/R>, weighted by the D^0 yield, to get physics v_2 .

◎ Non-zero $D^0 v_2$ in medium p_T is observed (检查第二步修正)

Motivation and STAR Experiment

• Energy loss

- Measurements of $D^0 p_T$ spectra and R_{AA} in isobar collisions at $\sqrt{s_{NN}} = 200$ at RHIC

Collectivity

- Measurement of D^0 elliptic flow v_2 at mid-rapidity in isobar collisions

• Research plan

Summary

- Jul. Nov. 2023: Pass PWG review for $D^0 p_T$ spectra and R_{AA} ;
- Nov. Jun. 2024: Finalize physical result for $D^0 v_2$;
- Jun. Dec. 2024: Finalize collaboration review and write Ph.D thesis;
- Dec. May. 2025: Prepare the Ph.D dissertation defense and paper publication

Motivation and STAR Experiment

Energy loss

- Measurements of $D^0 p_T$ spectra and R_{AA} in isobar collisions at $\sqrt{s_{NN}} = 200$ at RHIC

Collectivity

- Measurement of D^0 elliptic flow v_2 at mid-rapidity in isobar collisions

• Research plan

Summary

Summary

• $D^0 p_T$ spectra and R_{AA}

- D^0 -meson productions are firstly measured at mid-rapidity (|y| < 1) in 200 GeV isobar collisions
- The number of binary collisions scale effect of D^0 production cross section between isobar and Au + Au collisions is observed
- The strong suppression of D^0 nuclear modification factor R_{AA} is observed for $p_T > 3$ GeV/c in central isobar collisions, demonstrating that charm quarks suffer significant energy loss in the QGP. Consistent with that in Au+Au collisions with similar multiplicities.
- No significant systematic dependence of D^0 kinetic freeze-out properties in central collisions between isobar and Au + Au collisions within uncertainties is observed.

 \bigcirc Non-zero $D^0 v_2$ is observed

Thank you!

Backup

$dE/dx \& 1/\beta$

• Black points show the expected values

• Black curves show the expected values

Systematic uncertainties – spectra and R_{AA}

● D⁰ spectra (0-10%, 10-40% & 40-80%)

Double counting

Fig. Invariant mass distributions for $K_s^0 \to \pi^+\pi^-$ (a), $\phi \to K^+K^-$ (b) and $\Lambda^0 \to \pi^-p$ (c) hadronic decay channel to select pure π , K, and proton sample.

Invariant mass distributions of K, π from momentum smearing (red points) and doubly misidentification (bottom colored boxes). The red line is the fit to the smeared signal between 1.69 and 2.04 GeV/c^2 . From top left to bottom right show the distributions in p_T bins: 0-0.5 GeV/c, 0.5-1.0 GeV/c, ..., 7.5-8.0 GeV/c.

Yuan Su, Doctoral Dissertation Proposal

Spectra

$$E\frac{d^3N}{d\boldsymbol{p}^3} = \frac{d^3N}{p_T dp_T dy d\phi} = \frac{d^2N}{2\pi p_T dp_T dy}$$
$$\frac{d^2N}{2\pi p_T dp_T dy} = \frac{\Delta N^{raw}/\epsilon_{D^0}^{tot}/2}{2\pi p_T \Delta p_T \Delta y \times N_{events} \times B.R.} = \frac{\Delta N_{D^0}^{AA}}{2\pi p_T \Delta p_T \Delta y} = E\frac{d^3\sigma_{D^0}^{AA}}{d\boldsymbol{p}^3}$$

Nuclear modification factor

$$R_{AA} = \frac{d^2 N_{AA}^{D^0} / dp_T dy}{\langle T_{AA} \rangle d^2 \sigma^{PP} / dp_T dy} = \frac{\sigma_{inel}^{NN} d^2 N_{AA}^{D^0} / dp_T dy}{\langle N_{coll} \rangle d^2 \sigma^{PP} / dp_T dy}$$
$$R_{cp} = \frac{Y(0 - 10\%) / \langle N_{coll_0-10} \rangle}{Y(40 - 80\%) / \langle N_{coll_40-80} \rangle} \qquad \langle T_{AA} \rangle \times \sigma_{inel}^{NN} = \langle N_{coll} \rangle \quad 42 \text{ mb}$$

• Systematic uncertainties for integrated D^0 cross section

$$\frac{d\sigma_{D^0}^{NN}}{dy}|_{y=0} = \frac{dN_{D^0}^{AA}}{dy}|_{y=0} \times \frac{\sigma_{inel}^{pp}}{\langle N_{bin} \rangle}_{3}$$
$$\frac{1}{\frac{dN_{D^0}^{AA}}{dy}}|_{y=0} = \frac{(\Delta N^{raw} - D.C)/\epsilon_{D^0}^{tot}/2}{\Delta y \times N_{events} \times B.R.}_{2}$$

Open Charm Hadron	Constitution
D^0	cū
D^+	cd
D_s^+	cs
\wedge_c^+	udc

• Levy func

$$\frac{A(n-1)(n-2)}{nT(nT+m_0(n-2))} \times (1+\frac{m_T-m_0}{nT})^{-n}$$

\odot m_T Spectra

 $\frac{d^2 N}{2\pi p_T dp_T dy} = \frac{d^2 N}{2\pi m_T dm_T dy} = \frac{dN/dy}{2\pi T_{\text{eff}} (m_0 + T_{\text{eff}})} e^{-(m_T - m_0)/T_{\text{eff}}}$

• Blast-Wave func

$$E\frac{d^3N}{dp^3} \propto \int_0^R r dr m_{\rm T} I_0\left(\frac{p_{\rm T}\sinh(\rho)}{T_{\rm kin}}\right) K_1\left(\frac{m_{\rm T}\cosh(\rho)}{T_{\rm kin}}\right)$$

$$E\frac{d^3N}{dp^3} \propto m_T \int_{-Y}^{+Y} \cosh(y) dy \int_{-\pi}^{+\pi} d\phi \int_0^R r dr \\ \left(1 + \frac{q-1}{T_{\rm kin}} \left(m_T \cosh(y) \cosh(\rho) - p_T \sinh(\rho) \cos(\phi)\right)\right)^{-\frac{1}{q-1}}$$

Glauber model simulation

 m_T -spectra fit details

• m_T -spectra fit details for Au + Au (left) and isobar (right).