

Measurements of Charm Quark Interaction with the QGP in Heavy-Ion collisions at STAR

Yuan Su For the STAR collaboration

Dept. of Modern Physics University of Science and Technology of China

Open heavy-flavour produciton

 $m_c > \Lambda_{QCD}$, an ideal probe with a high probability of penetrating QGP

Open heavy-flavour production offers **a unique insight** into heavy-ion physics:

- Production is essentially restricted to **initial hard scatterings** (mainly gluon fusion) and **carry a "memory"** of the interaction history with sQGP
- Consistent with the theoretical calculation (**pQCD in p+p collisions**) and partons have energy loss in the medium
 - Gluon radiation (dead cone effect; suppressed at $\theta < m_Q/E_Q)$
 - Collisional energy loss (Brownian motion)

< 1 fm/c, initial partonic hard scattering

• The nuclear modification factor R_{AA} of heavy hadrons can be used to measure the nuclear effect

09/05/2023

$$R_{AA} = \frac{\sigma_{inel}^{NN} d^2 N_{AA}^{D^0} / dp_T dy}{< N_{coll} > d^2 \sigma^{PP} / dp_T dy}$$

 $\Gamma_i/\Gamma \sim 3.9\%$

K

Charm jets tagged with D^0 mesons

- D^0 tagged Jets probe the strongly interacting QCD medium
 - Provide **more details** of charm production processes, and test the contribution from higher-order pQCD calculations
 - Interactions between jets and the QCD medium set additional constraints on the charm energy loss mechanism and the medium properties

• Nuclear modification factors R_{cp} as a function of $p_{T,jet}$ and z

 $z = \vec{p}_{T,D^0} \cdot \hat{p}_{T,jet} / |\vec{p}_{T,jet}|$

- reduction of jet energy, "jet quenching"
- insight into the charm-quark fragmentation
- Study the internal structure of these tagged jets by radial distribution of the D^0 mesons in jets

$$\frac{1}{N_{jet}^{D^0}} \frac{dN_{jet}^{D^0}}{dr} = \frac{1}{N_{jet}^{D^0}} \frac{\Delta N_{jet}^{D^0}}{\Delta r}$$

- Low $p_T D^0$ mesons appear to be diffused in the presence of QGP at LHC
- A similar diffusion of charm quarks at lower p_T in Au+Au collisions?
- A significant suppression of D^0 meson tagged jet yield with lower D^0 kinematics?

PRL 125, 102001 (2020)

STAR Experiment

 \bigcirc

Time Of Flight detector (TOF) \bigcirc the precise $1/\beta$ extends PID power

 \sim 350 μ m, vertex resolution with more than 1000 tracks

Yuan Su @ QM 2023, September 3-9, 2023

measures neutral component of energy in jets

~ 30 µm, adding PXL hits into TPC track

 D^0 signal reconstruction

- The signal is extracted via an invariant-mass analysis
- The mix-event method can well reproduce the \bigcirc combination background

σ=11.3 ± 0.9 Me

$$E\frac{d^{3}N}{d\boldsymbol{p}^{3}} = \frac{d^{3}N}{p_{T}dp_{T}dyd\phi} = \frac{d^{2}N}{2\pi p_{T}dp_{T}dy}$$
$$\frac{d^{2}N}{2\pi p_{T}dp_{T}dy} = \frac{\Delta N^{raw}/\epsilon_{D^{0}}^{tot}/2}{2\pi p_{T}\Delta p_{T}\Delta y \times N_{events} \times B.R.} = \frac{\Delta N_{D^{0}}^{AA}}{2\pi p_{T}\Delta p_{T}\Delta y} = E\frac{d^{3}\sigma_{D^{0}}^{AA}}{d\boldsymbol{p}^{3}}$$

 d^3N

• D^0 production cross section follows number of binary collisions scaling, indicating charm quarks are mostly produced via initial hard scatterings

$$\frac{d\sigma_{D^0}^{NN}}{dy}|_{y=0} = \frac{dN_{D^0}^{AA}}{dy}|_{y=0} \times \frac{\sigma_{inel}^{pp}}{\langle N_{bin} \rangle}$$

- $d\sigma^{NN}/dy$ VS p_T is consistent with results in Au+Au collisions with similar $\langle N_{part} \rangle$
- For $p_T > 4 \ GeV/c$, $d\sigma^{NN}/dy$ decreases with $\langle N_{part} \rangle$ at RHIC energy

Yuan Su @ QM 2023, September 3-9, 2023

R_{AA} and R_{cp} vs. p_T

 Theoretical models that include collisional energy loss and charm-quark hadronization describe the suppression

8

6

 ${}^{3}p_{\tau}$ (GeV/c)⁵

2

m_T Spectra and Collectivity

 $D^0 T_{eff}$ is consistent with result in Au+Au collisions with similar $\langle N_{part} \rangle$ at the same collision energy

Less radial collectivity with respect to light hadrons, which radial velocity may dependent on collision system 09/05/2023

 \bigcirc

 \bigcirc

09/05/2023

D^0 tagged jet production in Au+Au collisons

• D^0 tagged jet p_T spectra for lower D^0 kinematics $1 < p_{T,D^0} < 10 \ GeV/c$

• Hint of suppression of D^0 meson tagged jet yield in central collisions

Diptanil Roy, Sep. , 2023 Poster Session

R_{cp} vs. $p_{T,Jet}$ and z_{Jet}

- D^0 tagged jet differential yield as a function of momentum fraction z
- Hard fragmented charm jets show signs of suppression, soft fragmented jets have R_{cp} consistent with 1.

Diptanil Roy, Sep. , 2023 Poster Session

Radial profile of D^0 Mesons jets

- Ratio of radial profile in central and peripheral consistent with 1, no hint of D⁰ meson diffusion with current precision (有点不同)
- D^0 -tagged jet measurement for R_{AA} and the ratio of radial profile will be explored using high-statistics p+p data in 2024

Diptanil Roy, Sep. , 2023 Poster Session

• $D^0 p_T$ spectra and R_{AA} in isobar collisions at STAR

- Detailed yield of D^0 are measured in isobar 200 GeV, and a significant suppression R_{AA} observed at $p_T > 3$ GeV/c in central collisions
- D^0 production cross section follows binary collisions scaling between isobar and Au + Au collisions
- No significant systematic dependence of D^0 kinetic freeze-out properties in central collisions between isobar and Au + Au collisions within uncertainties is observed.

• D^0 tagged jets in Au+Au collisons at STAR

- D^0 tagged jet yields VS p_T and z measured for $1 < p_{T,D^0} < 10 \ GeV/c$ at RHIC energies
- Hint of suppression of D^0 meson tagged jet yield in central collisions
- The ratios of the *D*⁰ meson radial distributions are consistent with unity within uncertainties, indicating that no significant diffusion of charm quarks with respect to the jet axis in Au+Au collisions

Backup

Hint of suppression of D⁰ meson tagged jet yield in central collisions

Hard fragmented charm jets show signs of suppression, soft fragmented jets have RCP consistent with 1. 8/23/23 Diptanil Roy (Rutgers) 14

09/05/2023

Technical details: Formulas

LIDO, Phys. Rev. C 98, 034004

1/23/23

Diptanil Roy (Rutgers)