Feed-down Subtraction

Dongsheng Li

How to Subtract

- F.D. raw Lambda estimated with Xi^{-} embedding and spectra
 - F.D. raw Lambda ~ $Xi^{-} Lambda + Xi^{0} Lambda ~ 2 * Xi^{-} Lambda$
 - Omega -> Xi + pi or Omega -> Lambda + K are not considered
- #(primary raw Lambda) = #(Inclusive raw Lambda) #(F.D. raw Lambda)
- #(primary Lambda) = #(primary raw Lambda) / primary Lambda efficiency
- Similar estimation for F.D. raw Lambdabar

How to Subtract

- Omega^{-} -> Xi^{-} -> Lambda
 B.R. ~ 10%
- Omega^{-} -> Xi^{0} -> Lambda
 B.R. ~ 20%
- Omega^{-} -> Lambda B.R. ~ 70%
 - Estimate with 0-5%:

Omega $^{-} + Omega^{+} \sim 1.8\%$ Lambda, Lambdabar

Centrality 0%-5% 20% - 40%60%-80% 10% - 20%40% - 60% $\langle N_{\rm part} \rangle$ 352 ± 3 235 ± 9 141 ± 8 62 ± 9 21 ± 6 $16.7 \pm 0.2 \pm 1.1$ $10.0 \pm 0.1 \pm 0.7$ $5.53 \pm 0.05 \pm 0.39$ $2.07 \pm 0.03 \pm 0.14$ $0.58 \pm 0.01 \pm 0.04$ Λ $309 \pm 1 \pm 8$ $308 \pm 1 \pm 8$ $303 \pm 1 \pm 8$ $297 \pm 2 \pm 10$ $287 \pm 3 \pm 10$ $\bar{\Lambda}$ $12.7 \pm 0.2 \pm 0.9$ $7.7 \pm 0.1 \pm 0.5$ $4.30 \pm 0.04 \pm 0.30$ $1.64 \pm 0.03 \pm 0.11$ $0.48 \pm 0.01 \pm 0.03$ $310 \pm 1 \pm 7$ $309 \pm 1 \pm 8$ $306 \pm 1 \pm 9$ $298 \pm 2 \pm 10$ $282 \pm 3 \pm 10$ $\Xi^ 2.17 \pm 0.06 \pm 0.19$ $1.41 \pm 0.04 \pm 0.08$ $0.72 \pm 0.02 \pm 0.02$ $0.26 \pm 0.01 \pm 0.02$ $0.063 \pm 0.004 \pm 0.003$ $335 \pm 4 \pm 7$ $331 \pm 4 \pm 8$ $326 \pm 3 \pm 6$ $325 \pm 4 \pm 7$ $320 \pm 8 \pm 13$ $\bar{\Xi}^+$ $1.83 \pm 0.05 \pm 0.20$ $1.14 \pm 0.04 \pm 0.08$ $0.62 \pm 0.02 \pm 0.03$ $0.23 \pm 0.01 \pm 0.02$ $0.061 \pm 0.004 \pm 0.002$

 $327 \pm 3 \pm 6$

 $0.17 \pm 0.02 \pm 0.01$

 $348 \pm 15 \pm 12$

 $327 \pm 5 \pm 7$

 $0.063 \pm 0.008 \pm 0.004$

 $336 \pm 17 \pm 13$

 $302 \pm 8 \pm 16$

. . .

. . .

TABLE I. Integrated yields dN/dy and inverse slope parameters T (MeV) extracted from a Boltzmann fit to the p_T spectra of $\Lambda(\bar{\Lambda})$, $\Xi^-(\bar{\Xi})^+$, and $\Omega^- + \bar{\Omega}^+$ at midrapidity, with their statistical and systematic errors. $\langle N_{part} \rangle$ is shown for each centrality.

PRL 98, 062301 (2007)

 $\Omega + \bar{\Omega}^+$

 $335 \pm 4 \pm 9$

 $0.53 \pm 0.04 \pm 0.04$

 $353 \pm 9 \pm 10$

 $334 \pm 4 \pm 9$

. . .

. . .

Reconstruct Lambda with Xi Embedding

1.Weight the total MC according to the Xi yield spectra

2.Apply exactly the same cuts on Xi->Lambda. This step is done automatically with a self-defined class which has been validated by the BG subtraction steps.

1.Weight the total MC according to the Xi yield spectra 2.Apply exactly the same cuts on Xi->Lambda. This step is done automatically with a self-defined class which has been validated by the BG subtraction steps.

- The pT-integrated feed-down fractions for Xi -> Lambda
 - Slightly varying with centrality
 - Comparable value with Au+Au 39 GeV result

https://drupal.star.bnl.gov/STAR/system/files/20201221_protonFD_Dingwei_0.pdf

Lambda(bar) at Au+Au 39 GeV :

$\succ \Lambda(\overline{\Lambda})$ spectra are weak decay feed-down corrected

~ 20% for Λ ; ~ 25% for $\overline{\Lambda}$

https://drupal.star.bnl.gov/STAR/system/files/zhang_SQM2015v3.pdf

A larger feed-down fraction at low pT

390.476/6

S=147.84 S=38077.12 ± 423.67

1.13 1.14 hass(π + p)(Ge)

S=117.95 S=23681.44 ± 328.52

1.1 1.11 1.12 1.13 1.14 1.15

mass(x + p)[GeV/c2]

787.686 = 29.

467.4137.6

10629 + 1

S=294.31 S+5 S = 161355.25 ± 930.98

Lambda in 0-80% pT 0.5~4.9

Black: Rot_BG Red: FG - Rot_BG - RES Blue: student-t fit

Higher pT with larger mass width

8

1.08 1.09 1.1 1.11 1.12 1.13 1.14 1.15

mass(x + p)[GeV/c²]

Violet: FG

- The pT-differential feed-down fractions show centrality dependence at pT < 1 GeV
- Quickly drop at low pT in all centralities

We cannot trust the trend at Lambda pT > 3.5, with a small portion of Xi at pT > 5 are not considered

Data-MC Comparison

- pT&y weighted (Iteration)
 - pT: use corrected spectra with interpolation, y: pol-2

Perfect consistence on pT/y distributions between data&mc So the iteration is properly weighting MC

11

Data-MC Comparison

- We get slightly better consistence on chi2/decay length distributions
- The improvement comes from pT weight
- So with F.D. correction, the pT shape is more close to primary Lambda

MC Lambda lifetime: 2.6173e-10s smaller than PDG value: 2.632e-10s 0.5% difference

- Efficiencies for Lambda and Lambda_bar are calculated, respectively
 - No tiny bit difference compared with previous results
 - This is expected
 - The only thing we have changed for MC is just the pT-weight
 - Since we use very fine pT-binning, the pT-differential efficiencies will not be affected
- There are still discrepancies between data&MC
 - Omega? (1.8%)
 - Total number small, but might be concentrated at low pT to change Lambda pT shape?
 - Wrong lifetime on MC Lambda? (0.5%, but might have more impact on MC shape)
 - Need reweight on lifetime
- How to assign systematics on F.D. correction?
 - From Xi and its parametrization, I need to get Xi systematic errors first. Function choice and fit error?
 - Will be part of signal extraction systematics of Lambda yields

Lambda Spectra with FD Correction

Primary Lambda(bar) fitted with blast-wave function

The high pT excess in 40-80% seems very different from other centralities?