# Update on H3L Errors

Dongsheng Li

# How I combine errors for various components

- dN/dy and its errors
  - In region where we have measurement
    - Use bincontents and binerror (stat. /sys.)
    - To combine stat./sys. err in different bins from measured region, do sqrt(a\*a+b\*b);
  - Extrapolation to region where we have no measurement
    - Stat. Err calculated with the 68% confidence band returned by TFitResult
    - Sys. Err calculated with scaling method
    - Function fit on dN/dptdy rather than dN/dptdy \* 1/pt, with option "I"
    - To combine stat. Err in measured and extrapolated region, do sqrt(a\*a+b\*b)
    - To combine sys. Err in measured and extrapolated region, do a+b

| Centrality | dN/dy ± stat. <mark>+</mark> sys. up<br>– sys. down               | Extrapolation<br>fraction |
|------------|-------------------------------------------------------------------|---------------------------|
| 0-10       | $4.03e-5 \pm 1.02e-5 + 4.40e-6$                                   | 0.56                      |
| 10-20      | 2.12e-5 ± 8.30e-6 + 2.23e-6                                       | 0.56                      |
| 20-40      | $1.21e-5 \pm 3.78e-6 \stackrel{+}{-} \stackrel{1.43e-7}{1.48e-6}$ | 0.62                      |
| 40-80      | 2.08e-6 ± 8.86e-7 + 2.62e-7<br>- 2.77e-7                          | 0.64                      |

| Centrality | dN/dy $\pm$ stat. $+$ sys. up<br>– sys. down                      | Extrapolation<br>fraction |
|------------|-------------------------------------------------------------------|---------------------------|
| 0-10       | 4.03e-5 ± 7.76e-6 + 3.96e-6<br>- 3.12e-6                          | 0.56                      |
| 10-20      | $2.12e-5 \pm 7.02e-6 \stackrel{+}{-} \stackrel{2.18e-6}{1.79e-6}$ | 0.56                      |
| 20-40      | 1.21e-5 ± 2.70e-6 + 1.58e-7<br>- 1.16e-6                          | 0.62                      |
| 40-80      | $2.08e-6 \pm 8.09e-7 - 3.09e-7$                                   | 0.64                      |



Both calculated from the 68% confidence level band returned by TFitResult.

Old (fit dN/dptdy \*1/pt with option "I") Whenever I need to combine errors, do a+b only.

New (fit dN/dptdy with option "I")

Do a+b only for scaling method. If correlation between a and b is not so clear, I will do sqrt(a\*a+b\*b) 2

- 3 methods to assign stat. error on the extrapolation component of dn/dy
  - Depend on stat. error from data and the fit performance
    - Confidence band method → Propagation method
    - Bootstrap method
  - ONLY depends on stat. error from data
    - Scaling method
- How I get the confidence band

٠

- By calling FitResult::GetConfidenceIntevals(unsigned int n, unsigned int stride1, unsigned int stride2, const double \* x, double \* ci, double cl, bool norm)
- double\* x should be organized as a bunch of vectors, with stride1 and stride2 defines the index to access each component of each vector typically, stride1 = ndim, stride2 = 1

fitter→**G**etConfidenceIntervals(gBand[ifunc][icut][ichg][icent]→GetN(), 1, 1, gBand[ifunc][icut][ichg][icent]→GetX(), gBand[ifunc][icut][ichg][icent]→GetEY(), 0.682689492137, false);

- <u>https://root.cern/doc/v628/FitResult\_8cxx\_source.html#I00495</u> (Line 495 -- 570)
- Propagate errors for parameters to the function value F(x,par)
  - By calculating gradient and the covariance matrix w.r.t. the parameters
- Return 1-sigma band for F(x,par)
- Confidence band is not good for dN/dy calculation
  - We need 1-sigma band for [s(par) = integral of F(x,par) ]
  - We can calculate gradient for [s(par) = integral of F(x,par) ] and do the propagation by ourselves
    - Use [s(par+dpar)-s(par-dpar)]/(2 dpar) (central difference) to calculate gradient near the best fit on par
    - Use sqrt(g<sup>T</sup>Cg) to do the propagation
  - Mathematically it is very clear

- How I do bootstrap
  - For i-th point (xi,yi) on the original spectrum, the stat. err is eyi
  - We get many other spectra by resampling the i-th point with Gaussian distribution (mean = yi, sigma = eyi)
  - Fit each resampling spectrum to get a dNdy in the extrapolated region, they form a distribution
  - Fit the resampling dN/dy distribution with a Gaussian to extract stat. err
  - Potential issue: the fit sometimes not good, how to extract stat. err? Do we use sigma from gaussian fit or use standard deviation of the resampling distribution?
- How I do scaling
  - Fit the spectrum
  - Calculate dNdy\_mea and dNdy\_ex, dNdy = dNdy\_mea + dNdy\_ex
  - We assume f = err\_dNdy\_ex / dNdy\_ex = err\_dNdy\_mea / dNdy\_mea
  - Then err\_dN/dy = f \* dNdy
  - Potential issue: I use an assumption; f might have fluctuation?
  - If we use scaling on systematic error estimation, we face similar problem?





- How I do Bootstrap
  - For i-th point (xi,yi) on the original spectrum, the stat. err is eyi
  - We get many other spectra by resampling the i-th point with Gaussian distribution (mean = yi, sigma = eyi)
  - Fit each resampling spectrum to get a dNdy in the extrapolated region, they form a distribution
  - Fit the resampling dN/dy distribution with a Gaussian to extract stat. err
  - Potential issue: the fit sometimes not good, how to extract stat. err? Do we use sigma from gaussian fit or use standard deviation of the resampling distribution?



- Compare 3 different methods on calculating stat. error for extrapolated dNdy
  - For bootstrap, we report gaus mean (mean of resampling distribution), gaus sigma (standard deviation of resampling distribution)
  - Confidence band method will estimate error larger than propagation
  - Scaling method will give much smaller error compared with other methods
  - Bootstrap will give dNdy and its error similar to propagation method, if we use mean and sigma of the resampling distribution rather than fitting a gaussian to get them.

| 0-10%           | Extrapolated dNdy   | lts stat. error     | 10-20%          | Extrapolated dNdy   | lts stat. error     |
|-----------------|---------------------|---------------------|-----------------|---------------------|---------------------|
| Confidence band | 2.267e-5            | 7.465e-6            | Confidence band | 1.182e-5            | 6.821e-6            |
| Propagation     | 2.267e-5            | 6.393e-6            | Propagation     | 1.182e-5            | 5.927e-6            |
| Bootstrap       | 2.234e-5 (2.255e-5) | 5.325e-6 (6.023e-6) | Bootstrap       | 1.334e-5 (1.171e-5) | 3.186e-6 (5.141e-6) |
| Scaling         | 2.267e-5            | 2.709e-6            | Scaling         | 1.182e-5            | 2.107e-6            |

| 20-40%          | Extrapolated dNdy   | lts stat. error     | 40-80%          | Extrapolated dNdy   | lts stat. error     |
|-----------------|---------------------|---------------------|-----------------|---------------------|---------------------|
| Confidence band | 7.466e-6            | 2.615e-6            | Confidence band | 1.332e-6            | 7.967e-7            |
| Propagation     | 7.466e-6            | 2.452e-6            | Propagation     | 1.332e-6            | 7.577e-7            |
| Bootstrap       | 7.238e-6 (7.373e-6) | 2.263e-6 (2.596e-6) | Bootstrap       | 1.263e-6 (1.366e-6) | 5.682e-7 (7.099e-7) |
| Scaling         | 7.466e-6            | 1.094e-6            | Scaling         | 1.332e-6            | 2.541e-7            |