Lifetime and Yield Measurements of Light Hypernuclei from STAR Experiment

- Xiujun L

University of Science and Technology of China

Outline

Introduction

- Lifetime and yield measu STAR
- Summary
- Outlook

Lifetime and yield measurements of hypernuclei from

Introduction: what and why

• What are hypernuclei?

- Why hypernuclei?
 - Probe hyperon-nucleon (Y-N) interaction
 - Strangeness in high density nuclear matter
 - Hyperon puzzle in neutron star \bullet

Marian Danysz (right) and Jerzy Pniewski (left) discovered hypernuclei in 1952

le

 $^{4}_{\Lambda}$ He

()
5
5
\rightarrow
\mathbf{O}
H .
\mathbf{O}
\mathbf{O}
9
Ì
h
•
\mathbb{N}
\bigcirc
5
\smile
()
• •
\mathbb{N}
$\mathbf{\nabla}$

Introduction: how

- Experimentally, we can make measurements related to:
 - 1. Internal structure
 - Lifetime, binding energy, branching ratios etc. lacksquare
 - 2. Production mechanism
 - Spectra, collectivity etc. lacksquare

The process of hypernuclei formation in violent heavy-ion collisions is not well understood

Understanding hypernuclei structure can provide insights to the Y-N interaction

extends the energy reach below $\sqrt{s_{NN}}$ = 7.7 GeV, down to 3.0 GeV

2023/11/25

• During the BES-II program, STAR utilized the fixed-target (FXT) setup, which

Hypernuclei and STAR BES-II List of BES-II datasets:

• Hypernuclei measurements are scarce in heavy-ion collision experiments

A. Andronic et al. PLB (2011) 697:203–207

2023/11/25

- At low beam energies, hypernuclei production is expected to be enhanced due to high baryon density
 - Datasets with large statistics taken during **BES-II**
 - \rightarrow A great opportunity to study hypernuclei production

Year	√ <i>s_{NN}</i> [GeV]	Events
2018	27	555 M
	<u>3.0</u>	258 M
	<u>7.2</u>	155 M
2019	19.6	478 M
	14.6	324 M
	<u>3.9</u>	53 M
	<u>3.2</u>	201 M
	<u>7.7</u>	51 M
2020	11.5	235 M
	<u>7.7</u>	113 M
	<u>4.5</u>	108 M
	<u>6.2</u>	118 M
	<u>5.2</u>	103 M
	<u>3.9</u>	117 M
	<u>3.5</u>	116 M
	9.2	162 M
	<u>7.2</u>	317 M
2021	7.7	101 M
	<u>3.0</u>	2103 M
	<u>9.2</u>	54 M
	<u>11.5</u>	52 M
	<u>13.7</u>	51 M
	17.3	256 M
	<u>7.2</u>	89 M

6

ation and hypernuclei reconstruction@STAR

- Particle identification from energy loss measurement provided by TPC
- KF particle package^[1] is used for signal reconstruction
- Hypernuclei reconstructed via their weak decay channels: $^{3}_{\Lambda}H \rightarrow ^{3}He + \pi^{-}$ $^{3}_{\Lambda}H \rightarrow d + p + \pi^{-}$ $^{4}_{\Lambda}H \rightarrow ^{4}He +$

2023/11/25

$$\pi^{-}$$
 ⁴ _{Λ} He \rightarrow ³He $+$ p $+$ π^{-}

[1]Zyzak M, Kisel I, Senger P. Online selection of short-lived particles on many-core computer architectures in the CBM experiment at FAIR[R]. Collaboration FAIR: CBM, 2016.

Hypernuclei signal reconstruction @STAR

2023/11/25

- background
- GeV(2018) in CM frame
 - Upgrade on detector in 2019

Combinatorial background estimated via rotational and mix-event

Better mid-rapidity coverage for 3.2 GeV(2019) compared with 3

${}^{3}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ He lifetimes @STAR

2023/11/25

${}_{\Lambda}^{3}$ H, ${}_{\Lambda}^{4}$ H and ${}_{\Lambda}^{4}$ He lifetimes

STAR, PRL 128, 202301(2022) ALICE, PRL 131, 102302 (2023) JPARC, PLB 845, 138128 (2023)

2023/11/25

- Indicator of shorter lifetimes for $^3_\Lambda H$, $^4_\Lambda H$ and $^4_\Lambda He$ than that of free Λ (with 1.8 σ , 3.0 σ , 1.1 σ respectively)
- Consistent with former measurements (within 2.5 σ for ${}^3_{\Lambda}H$, ${}^4_{\Lambda}H$)
- STAR provide first ${}^{4}_{\Lambda}$ He lifetime measurement in HI
- $^{3}_{\Lambda}$ H, $^{4}_{\Lambda}$ H results with improved precision
- \rightarrow Provide tighter constraints on models.

- Different trends in the $^{4}_{\Lambda}$ H rapidity distribution in central (0-10%) and mid-central (10-50%) collisions at $\sqrt{s_{NN}}$ = 3.0 GeV
 - reproduce the trend of ${}^3_{\Lambda}$ H in 10-50%

2023/11/25

• Transport model (JAM) with coalescence approximately reproduces trends of $^{4}_{\Lambda}$ H rapidity distributions seen in data, but fails to

Energy dependence of ${}^{3}_{\Lambda}H$ yields in heavy-ion collisions

Thermal-FIST, UrQMD: Phys.Rev.C 107 (2023), 014912 ALICE, PLB 754 (2016) 360

First energy dependence of hypernuclei production yields in the high-baryon-density region

- High production yields of ${}^{3}_{\Lambda}$ H around 3-4 GeV and decrease towards higher energies
 - Hadronic transport + coalescence models qualitatively describe the data
 - Thermal model calculation ~2 times higher than data in BES-II energies \bullet

Summary

- density region
 - Precision ${}^3_{\Lambda}$ H, ${}^4_{\Lambda}$ H lifetimes measured
 - First ${}^{4}_{\Lambda}$ He lifetime measurement in HI experiment
 - Light hypernuclei production yields from Au+Au collisions at BES-II
 - First measurement of dN/dy vs. y for hypernuclei
 - First energy dependence of hypernuclei dN/dy
 - Provide constraints to hypernuclei production models @ high $\mu_{\rm R}$

• STAR BES-II provides a unique opportunity to study hypernuclei at high-baryon-

14

Outlook

Huge datasets form BES-II:

Precision measurements on hypernuclei properties and yields

3 GeV 2B events!

• Expected significance from BES-II: $^{4}_{\Lambda}$ H : 60 σ $^{4}_{\Lambda}$ He: 40 σ $^{5}_{\Lambda}$ He: 10 σ Chance for A >= 4 hypernuclei

