

First look of inclusive J/ ψ cross section in Run 3 pp collisions

Yuan Zhang 2023/12/26

Introduction

 $\frac{d^2\sigma}{dydp_T} = \frac{N_{raw}^{J/\psi}}{(A \times \epsilon)BR_{J/\psi \to ee} \Delta y \, \Delta p_T Lumi.}$

- ≻ BR: (5.971 ± 0.032)%
- ≻ Lumi: 19.3 *pb*⁻¹
- N: raw counts obtained from J/psi signal extraction using high IR data collected in 2022
- A × ε: obtained from data-driven and general purpose MC anchored to low IR data

Datasets

Data

DQ-PWG-skimmed-Jpsi2eeTree:

523142, 523148, 523182, 523186, 523298, 523306, 523308, 523309, 523397, 523399, 523401, 523441, 523541, 523559, 523669, 523671, 523677, 523728, 523731, 523779, 523783, 523786, 523788, 523789, 523792, 523797, 523821, 526463, 526465, 526466, 526467, 526468, 526486, 526505, 526512, 526525, 526526, 526528, 526559, 526596, 526606, 526612, 526639, 526641, 526647, 526649, 526713, 526714, 526715, 526716, 526719, 526720, 526776, 526886, 526938, 526963, 526964, 526966, 526967, 526968, 527015, 527016, 527028, 527031, 527033, 527034, 527038, 527039, 527041, 527057, 527076, 527109, 527237, 527240, 527259, 527260, 527261, 527262, 527349, 527446, 527518, 527523, 527690, 527694, 527731, 527734, 527736, 527821, 527825, 527826, 527828, 527848, 527850, 527852, 527863, 527864, 527865, 527869, 527871, 527895, 527898, 527899, 527902, 527963, 527976, 527978, 527979, 528021, 528026, 528036, 528094, 528097, 528105, 528107, 528109, 528110, 528231, 528232, 528233, 528263, 528266, 528292, 528294, 528316, 528319, 528328, 528329, 528330, 528332, 528336, 528347, 528359, 528379, 528381, 528386, 528448, 528451, 528461, 528463, 528530, 528531, 528534, 528537, 528543, 528602, 528604, 528617, 528781, 528782, 528783, 528784, 528798, 528801, 529077, 529078, 529084, 529088, 529115, 529116, 529117, 529128, 529208, 529209, 529210, 529211, 529237, 529242, 529248, 529252, 529270, 529306, 529317, 529320, 529324, 529338, 529341, 529450, 529452, 529454, 529458, 529460, 529461, 529462, 529542, 529552, 529554, 529662, 529663, 529664, 529674, 529675, 529690, 529691

MC

► LHC23d1k:

520259, 520294, 520471, 520472, 520473

Analysis cuts

Event selection:

➢ |VtxZ| < 10 cm</p>

Tracking cuts:

- ▶ p_T > 1 GeV/c
- ▶ |η| < 0.9</p>
- TPCncls > 90
- TPCchi2 < 4</p>
- ITSncls > 3
- ITSchi2 < 5</p>
- > At least one hit at the first two layers of ITS
- ➢ |DCAz | < 1.5 cm</p>
- ➢ |DCAzy | < 1 cm</p>

➢ PID cuts:

- \succ -2 < TPC $n\sigma^e$ < 3
- \succ TPC $n\sigma^p > 3$
- \succ TPC $n\sigma^{\pi} > 3$

kinematics distribution

- > The same cuts are applied on data and MC when drawing the QA plots.
- The pT distribution are different between data and eFromPiO in MC.
- The eta and phi distributions are similar between data and MC.
- The statistics of tracks with high pT in MC is low.

ITS distribution

- The ITSncls distribution are different between data and MC.
- The ITS perform better in MC, since the data is high IR but MC is anchored to low IR.

TPC distribution

Signal extraction

Acceptance

- > Toy MC is used to simulate J/psi decay to dielectron.
- > Apply the acceptance cut on electron.
- > The J/psi pass the cut only if the two daughters pass the acceptance cut.

PID efficiency

- > The pure electrons are selected via VO selection, Double Gaussian is used to fit the $n\sigma_e$ distribution.
- Evaluated the single-electron PID efficiency, and then propagate the electron PID efficiency to the pairs via toy MC

Tracking efficiency

- Tracking efficiency of single electron is directly obtained from the electrons from PiO in General purpose MC LHC23d1k.
- > The J/psi tracking efficiency is propagated using Toy MC.

Mass window efficiency

Mass window efficiency is obtained from integration of Crystal Ball function in the mass window divided by the integration in the fit range.

- > Efficiency obtained in this work is shown together and compared with the efficiency in run 2 analysis.
- > Because the analysis cuts and detector status are different, the efficiency should be different.

Final results

- > The cross section from this analysis is different from published result in run 2 pp collision.
- Luminosity is overestimated.
- Tracking and mass window efficiency are not trustable for now.
 - The MC is anchored to low IR data.
 - > Double check using new produced J/psi injected MC.

Summary

First look of J/psi cross section in run 3 pp collisions:

- > Efficiency obtained from data-driven and MC anchored to low IR data.
- > J/psi signal shape is obtained from fitting the data.
- > The first results are different from the publish results in run 2 pp collisions.

> Next to do:

- > Checking the new produced J/psi injected MC anchored to low IR data.
- Using the J/psi injected MC to double check the efficiency.

Back up

Variable	cut value
DCA _{xy}	< 0.2 cm
$ \mathbf{DCA}_z $	< 0.4 cm
$ \eta $	< 0.9
p_{T}	> 1 GeV/c
TPC n_{σ} electron	$\in \left[-2.0, 3.0 ight]$
TPC n_{σ} proton	> 3
TPC n_{σ} pion	> 3
require ITS refit	yes
require TPC refit	yes
reject kinks	yes
require SPD any	yes
TPC $ \chi^2 $	$\in [0.0, 4.0]$
ITS $ \chi^2 $	$\in [0.0, 36.0]$
TPC N _{cls.}	\in [70, 160]
TPC N track segments	≥ 6
ITS N_{cls} , shared	≤ 1

Table 3: Electron and positron track selection cuts.