Measurement of Timelike Neutron Form Factors at BESIII

Xiaorong Zhou

Outline

Introduction

- Event selection
- Signal extraction
- Efficiency correction
- Angular distribution
- Cross section
- Conclusion

Basic idea of the event selection

- Number of charged tracks equals to 0, N_{track}=0
- Most energetic shower as \overline{n} candidate
- Searching for neighbor TOF counters
 - ▶ 1. Locate X, Y in TOF
 - > 2. Find out all the hit information in raw data within $\Delta \Phi < 25^{\circ}$ $(\Delta \Phi = |\Phi_{tof} - \Phi_{EMC}|$
 - > 3. Determine Z in TOF, select the hit in tof with minimum $\Delta \forall$
 - $\succ t_{texp} = L/(\beta c), \beta = p/\sqrt{p^2c^2 + M^2c^4}$
- Search for back-to-back TOF counter as neutron
- No neutron TOF? Search for second energetic shower as neutron

Analysis strategy

Distributions used in category B

Application of BDT

TMVA is applied for further selection, with the variables all from **track** level.

In TMVA (BDT booked):

➤ Signal:

- **\star** n and \overline{n} are selected from $J/\psi \rightarrow pn\pi$
- **★** The β in control sample is suitable for different β in signal process
- ★ Six momentum region selected for energy points between 2.1 to 3.08 GeV

> Background:

★ Treat survived data as background, since S/B is extremely low

\sqrt{s} (GeV)	β1	β2
2.1	0.45	[0.42, 0.50]
2.125	0.47	
2.175	0.50	[0.5, 0.57]
2.2	0.52	
2.2324	0.54	
2.3094	0.58	[0.55, 0.60]
2.3864	0.62	[0.60, 0.65]
2.396	0.62	
2.6444	0.70	[0.68, 0.72]
2.90	0.76	>0.7
3.08	0.79	

β1:
$$\beta = \sqrt{1 - \frac{4m_p^2}{s}}$$
 in signial region
β2: $\beta = p/E$ of recoiled pπ in control
sample

Application of BDT

Selection of variables

Emc	Tof based	
nbar_energy	n_nergy	nbar_ A T _{nbar}
nbar_eseed	n_eseed	nbar_∆z
nbar_shape	n_shape	
nbar_hit	n_hit	
nbar_hit_40d		
nbar_secmom	n_secmom	
nbar_latmom	n_latmom	
nbar_A20mom	n_A20mom	
nbar_A42mom	n_A42mom	

remove large correlated variables remove variables varies a lot with momentum

Correlation Matrix (signal)

variables in β region [0.6, 0.65] & [0.55, 0.7]

Application of BDT

Table 6: The variables used in the BDT classifier, ranked by the importance at $\sqrt{s}=2.396$ GeV.

Rank	Variable	Importance	comment
1	nbar_hit_40d	2.400e-01	number of hit within 40° cone of \bar{n} shower
2	nbar_deltat	1.936e-01	$T_{TOF1} - T_{\bar{n}} - T_0$
3	nbar_energy	1.459e-01	deposition energy of \bar{n} in EMC
4	n_hit	1.257e-01	number of hit of <i>n</i> shower
5	nbar_hit	1.074e-01	number of hit of \bar{n} shower
6	nbar_deltaz	9.700e-02	distance difference of \bar{n} between tof and EMC in z direction
7	nbar_secmom	9.030e-02	second moment of \bar{n}

• The output descriminator of BDT training are shown in Fig. 3.

Signal extraction

Efficiency correction

Definition

- $\succ \varepsilon_{\bar{n}}(p, \cos\theta)$, efficiency at the momentum, polar angle space for anti-neutron
- $\succ \varepsilon_n(p, \cos\theta)$, efficiency at the momentum, polar angle space for neutron
- In signal case, anti-neutron and neutron emitted oppositely, negatively correlated
 - > antineutron emitted at $(p, cos\theta)$, then neutron expected at $(p, -cos\theta)$
 - $\succ P = \sum_{p}^{\cos\theta} f_{\bar{n}}(p, \cos\theta) \varepsilon_{\bar{n}}(p, \cos\theta) \varepsilon_{n}(p, -\cos\theta)$
 - $\succ \varepsilon_n(p, -\cos\theta) = \varepsilon_n(p, \cos\theta)$ since angular distribution symmetry
- If there are some event level selections,
 - ► $P=\sum_{p}^{\cos\theta} f_{evt}(n,\bar{n})f_{\bar{n}}(p,\cos\theta) \varepsilon_{\bar{n}}(p,\cos\theta)\varepsilon_{n}(p,-\cos\theta)$, the efficiency will affect since no control sample to determine $f_{evt}(n,\bar{n})$
 - In category B case, no event level selections, we use

 $P = \sum^{\cos\theta} f_{\bar{n}}(\cos\theta) \varepsilon_{\bar{n}}(\cos\theta) \varepsilon_n(\cos\theta)$

(assuming p makes no difference on the efficiency in a narrow momentum region)

Efficiency correction

- Three data/MC correction curves
 - \triangleright nbar-based selection
 - \geq n-based selection

0.50

Efficiency 0.45 0.40

0.30E

0.25

0.20E

0.15E

0.10E

0.05 E

0.00

-0.6 -0.4 -0.2 0.0

0.2

- > BDT discriminator
- Efficiency curve expressed versus cos-theta, the difference curve has weak dependence with costheta.
- The difference can fitted with a linear function under $|G_{\rm E}/G_{\rm M}|$ assumption.

0.10

0.09 0.08

0.07 0.06

0.05 0.04

0.03 0.02

0.01

Efficiency

Cross sections and FFs

Experimentally, the Born cross sections of $e^+e^- \rightarrow n\bar{n}$ can be calculated by

$$\sigma_{Born} = \frac{N^{\text{obs}}}{\mathcal{L}_{\text{int}} (1 + \delta) \epsilon_{mc} \epsilon_{cor}}$$

The theoretical Born cross section of baryon pair from e^+e^- annihilation can be expressed as:

$$\sigma_{Born} = \frac{4\pi\alpha^2 C\beta}{3s} [|G_M|^2 + \frac{2m^2}{s} |G_E|^2]$$

The effective form factor defined by

$$|G| = \sqrt{\frac{|G_M|^2 + (2m^2/s)|G_E|^2}{1 + 2m^2/s}}$$

is proportional to the square root of the baryon pair production cross section, which can be calculated accroding to

$$|G| = \sqrt{\frac{3s\sigma_{Born}}{4\pi\alpha^2\beta(1+2m^2/s)}}$$

Cross sections and FFs

\sqrt{s} (GeV)	N ^{obs}	$\mathcal{L}_{int} (pb^{-1})$	$(1+\delta)$	ϵ_{mc} (%)	ϵ_{cor}	σ_{Born} (pb)	G (×10 ⁻²)	significance
2.1000	31.7 ± 7.6	12.2	0.99	1.39	0.86	220.8 ± 50.8	13.4 ± 1.5	3.7σ
2.1250	223 ± 20	108.5	1.08	1.64	0.86	134.3 ± 12.0	10.4 ± 0.5	6.1σ
2.1750	22.2 ± 5.9	10.6	1.12	2.27	0.89	92.2 ± 24.9	8.5 ± 1.2	3.7σ
2.2000	19.6 ± 5.9	13.7	1.09	2.54	0.89	58.4 ± 17.5	6.8 ± 1.0	2.2σ
2.2324	35.0 ± 7.5	11.9	1.05	2.83	0.89	111.7 ± 24.6	9.4 ± 1.0	4.4σ
2.3094	52.9 ± 8.9	21.1	1.10	3.48	0.87	75.9 ± 12.5	7.8 ± 0.6	5.1σ
2.3864	77 ± 10	22.5	1.04	4.05	0.90	89.7 ± 11.8	8.5 ± 0.6	8.1σ
2.3960	233 ± 17	66.9	1.03	4.06	0.90	91.7 ± 7.1	8.6 ± 0.3	12.0σ
2.6444(+2)	99 ± 12	67.7	1.45	4.83	0.84	24.8 ± 3.2	4.7 ± 0.3	5.3σ
2.9000	68 ± 10	105.3	1.68	4.89	0.82	9.7 ± 1.6	3.2 ± 0.3	3.9σ
3.0800	59 ± 10	126.2	1.87	4.77	0.82	6.4 ± 1.2	2.7 ± 0.2	3.1σ

Different angular distribution

- > First iteration : $1 + cos^2 \theta$
- Second iteration: 1
- Different line-shape

Angular analysis at $\sqrt{s} = 2.125$ GeV

Divide cos-theta into 6 bins

Fit opening angle in each bin

Angular analysis at $\sqrt{s} = 2.3864, 2.396$ GeV

Combined energy points $\sqrt{s} = 2.3864, 2.396 \text{ GeV}$

Efficiency correction for Angular distribution

- 1. Correction1: ratio of the observed events to its Born level
- 2. correction2:ratio of reconstructed level to its generated level
- 3. correction 3: efficiency difference between data and MC

Extraction of GE/GM ratio

The total efficiency correction is the multiply of the three corrections described above. The distribution of neutron polar angle $\theta_{\bar{n}}$ in data dividing the correction curve is shown in Fig. 12. The angular distribution depends on the electric and magnetic FFs, expressed as:

$$F(\cos\theta(\bar{n})) = N_{\text{norm}}[1 + \cos^2\theta + \frac{4m^2}{s}R^2(1 - \cos^2\theta)]$$
(12)

where $R = |G_E/G_M|$ is the ratio of electric to magnetic FFs, and N_{norm} is the overall normalization factor. Both *R* and N_{norm} can be extracted directly by fitting the $\cos \theta$ distributions with Eq. 12.

$$N_{norm} = \int_{-0.75}^{0.75} \frac{\pi \alpha^2 \beta \mathcal{L}}{2s} [G_M^2 (1 + \cos \theta^2) + \frac{4m^2}{s} G_E^2 (1 - \cos \theta^2)] = \frac{\pi \alpha^2 \beta \mathcal{L}}{2s} [1.78 + 4.87 \frac{m^2}{s} R^2] G_M^2 \quad (13)$$

The corresponding ratios $R = |G_E/G_M|$ and $|G_M|$ are shown in Table 9.

Table 9: Summary of the ratio of electric to magnetic FFs $|G_E/G_M|$ and magnetic FF $|G_M|$ by means of fitting on the distribution of $\cos \theta$.

\sqrt{s} GeV	$ G_E/G_M $	$ G_M $ (×10 ⁻²)
2.125	1.18 ± 0.08	8.1 ± 0.3
2.3864+2.396	1.28 ± 0.12	6.8 ± 0.3

Systematic uncertainty

Sources	Uncertainty	Comments
nbar enegy	2.9%	varying energy threshold of nbar in EMC
n energy	8.5%	varying energy threshold of n in EMC
cut-based	6.7%	using pure cut-based selection
MLP	~4.0%	using MLP method to train
BDT input	~4.8%	different BDT input variables
BDT>0.15	~4.0%	different BDT>0.1 to BDT>0.15
correction factor	2.3%	1σ data/MC correction factor
line-shape	<1%	last two iterations
Angular distribution	<10% for 2.125, 2.3864, 2.396 GeV ~20% for other energy points	Varying G_E/G_M ratio within 1σ Difference $ G_E =0$, $ G_M =0$
Luminosity	1%	
In total	<16.9% for 2.125, 2.3864, 2.396 GeV ~24.2% for other energy points	

Compare of Cross section and Effective form factor (not updated)

Comparison with other experimental results (not updated)

Comparison with $e^+e^- \rightarrow p\overline{p}$ (not updated)

Comparison with $e^+e^- \rightarrow p\overline{p}$ (not updated)

$$G_E(q^2) = F_1(q^2) + \tau \kappa_p F_2(q^2)$$

$$G_M(q^2) = F_1(q^2) + \kappa_p F_2(q^2)$$

high q ² pQCD predicts:	$F_1(q^2)$	$\propto \frac{\alpha_s^2(q^2)}{q^4}$	$F_2(q^2) \propto \frac{\alpha_s^2(q^2)}{q^6}$		
ive prediction for the neut	ron:	$ \frac{G_M^n}{G_M^p} ^2$	$\approx (\frac{q_d}{q_u})^2 = 0.25$		

Backup

2D efficiency between MC model & MC control sample

Category 2: cut-based

Yielding:
$$N_{sig} = 177 \pm 15$$
, $\varepsilon_{MC} = 2.8\%$
Data/MC correction: $\varepsilon_{cor} = 1.04$
Cross section: $\sigma^B = \frac{177 \pm 15}{2.8\% \times 1.04 \times 66.87 \times 1.04} = 85.5 \pm 7.3$ pb

Category 2: BDT

Yielding:
$$N_{sig} = 233 \pm 17$$
, $\varepsilon_{MC} = 4.0\%$
Data/MC correction: $\varepsilon_{cor} = 0.90$
Cross section: $\sigma^B = \frac{233 \pm 17}{4.0\% \times 0.90 \times 66.87 \times 1.04} = 91.7 \pm 6.7$ pb

Category 3: cut-based

0.050 $E_{\bar{n}} > 0.5 \text{ GeV}$ Efficiency 1. 0.045 0.040 100 0.035 $Hit_{\bar{n}40^{\circ}} > 40$ 2. 0.030 0.025 80 $Secmom_{\bar{n}} > 20$ 3. 0.020 Events/2 0.015 60 0.010 $Tof_{\bar{n}}$ not valid *4*. 0.005 0.000 40 -0.6 -0.2 0.0 0.2 0.4 -0.4 0.6 $0.06 < E_n < 0.5 \text{ GeV}$ 5. cos0(n) 20 €_{data}/€_{MC} Tof_n not valid 6. 1.6 140 1.6 170 175 145 150 155 160 165 180 $E_{extra} < 0.1 \, \text{GeV}$ 7. Opening angle @ 2.1 GeV $|\cos\theta| < 0.75$ 8. cos0(n)

Yielding:
$$N_{sig} = 193 \pm 17$$
, $\varepsilon_{MC} = 2.4\%$
Data/MC correction: $\varepsilon_{cor} = 1.3$
Cross section: $\sigma^B = \frac{193 \pm 17}{2.4\% \times 1.3 \times 66.87 \times 1.04} = 88.9 \pm 7.8 \text{ pb}$

Category 3: BDT

0.050 Efficiency 0.045 $E_{\bar{n}} > 0.5 \text{ GeV}$ 1. 90 0.040 0.035 80 $Hit_{\bar{n}40^{\circ}} > 40$ 0.030 2. 70 E 0.025 0.020 60 Events/2 $Tof_{\overline{n}}$ not valid 3. 0.015 50 0.010 E 0.005 $0.06 < E_n < 0.5 \text{ GeV}$ 40 4. 0.000 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 30 cosθ(n) *5.* Tof_n not valid 20 €_{data}/€_{MC} 10 $E_{extra} < 0.1 \, \text{GeV}$ 6. 140 145 150 155 160 165 170 175 180 Opening angle @ 2.175 GeV $|\cos\theta| < 0.75$ 7. 1.0 BDT>0.1 8. cos0(n)

Yielding:
$$N_{sig} = 228 \pm 30$$
, $\varepsilon_{MC} = 2.56\%$
Data/MC correction: $\varepsilon_{cor} = 1.5$
Cross section: $\sigma^B = \frac{228 \pm 30}{2.56\% \times 1.5 \times 66.87 \times 1.04} = 83.1 \pm 10.9$ pb

Combine of Cross section (not updated)

$$\sigma = \frac{\sum w_i \sigma_i}{\sum w_i}, \, \delta \sigma = \sqrt{\frac{\sum w_i^2 \delta_i^2}{\sum w_i^2}} \, (w_i = \frac{1}{\delta_i^2})$$

\sqrt{s} (GeV)	σ ₂ (pb)	σ ₂ (pb)	σ ₃ (pb)	σ ₃ (pb)
2.0	230.4±55.4	-	-	230.4 ± 55.4
2.1	99.6±31.1	262.7±95.5	-	168.7 ±39.9
2.125	109.3 ± 10.1	159.5 <u>±</u> 33.9	190.1±18.1	149.3±9.5
2.175	77.8 <u>±</u> 27.6	144.4 <u>±</u> 50.9	-	111.2 <u>+</u> 27.8
2.2	43.8 <u>±</u> 18.6	-	198.9 <u>±</u> 39.5	171.0 <u>±</u> 30.7
2.2324	97.4±29.1	123.6±43.6	130.1 ± 32.1	118.3 <u>+</u> 19.8
2.3094	90.8±19.1	100.7 ± 26.0	80.0±13.6	87.7±10.3
2.3864	85.6±17.6	113.8 <u>+</u> 22.0	88.9±12.5	94.7 <u>±</u> 9.4
2.396	98.2±10.6	97.7 <u>±</u> 15.8	95.5 <u>+</u> 8.5	96.8 <u>±</u> 6.1
2.6444(+2MeV)	19.1±8.7	42.7±9.1	20.9 ± 3.4	28.3±3.5
2.90	21.0±5.9	-	9.0±1.6	12.4 <u>±</u> 1.9
3.08	4.9±4.7	-	-	4.9±4.7

Combine of Effective form factor (not updated)

\sqrt{s} (GeV)	$ G_{eff} 1 \ (imes 10^{-2})$	$ G_{eff} ^2 (imes 10^{-2})$	$ \mathrm{G}_{\mathrm{eff}} _{3}(imes$ $10^{-2})$	$ \mathrm{G}_{\mathrm{eff}} ~(imes~10^{-2})$
2.0	14.2 <u>±</u> 1.7			14.2 <u>+</u> 1.7
2.1	8.7±1.3	14.2 <u>±</u> 2.6		11.0±1.3
2.125	9.1 ± 0.4	11.0 ± 1.1	12.3±0.6	10.6±0.3
2.175	7.6 ± 1.3	10.3 ± 1.9		8.9±1.1
2.2	5.7±1.3		12.5 ± 1.2	11.3±0.9
2.2324	8.4 <u>±</u> 0.9	9.5±1.7	10.1 ± 1.2	9.5±0.7
2.3094	8.2 <u>±</u> 0.8	8.7 <u>±</u> 1.1	8.0 <u>±</u> 0.7	8.2 <u>±</u> 0.5
2.3864	8.1 <u>±</u> 0.8	9.3 <u>±</u> 0.9	8.5 <u>±</u> 0.6	8.6 <u>±</u> 0.5
2.396	8.7 <u>±</u> 0.5	8.6 <u>±</u> 0.7	8.8 ± 0.4	8.7 <u>±</u> 0.3
2.6444(+2MeV)	4.0 ± 0.9	6.1 <u>±</u> 0.6	4.4 ± 0.4	5.0 <u>±</u> 0.3
2.90	4.6 <u>±</u> 0.6		3.1 ± 0.3	3.6±0.3
3.08	2.3 ± 1.1			2.3 ± 1.1

check (between BDT and Cut-based)

