

Measurement of Proton Electromagnetic Form Factors

L. Xia et al

Inroduction Motivation I Motivation II

Method

 $\begin{array}{l} \text{Measurement of} \\ \text{cross section and} \\ | \textit{G}_{\textit{E}} / \textit{G}_{\textit{M}} | \\ \\ \text{Cross section} \\ \text{and effective FF} \\ | \textit{G}_{\textit{E}} / \textit{G}_{\textit{M}} | \\ \\ \textit{G}_{\textit{M}} | \\ \end{array}$

Summary

Measurement of Proton Electromagnetic Form Factors in $e^+e^- \rightarrow p\bar{p}$ in energy region 2.0 -3.08 GeV

L. Xia^{1,a}, X. R. Zhou^{1,a}, G. S. Huang^{1,a}, Z. G. Zhao^{1,a} ¹ University of Science and Technology of China, Hefei 230026, Peoples Republic of China ^a State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, Peoples Republic of China <u>Ch. Rosner</u>², C. Morales², Y. D. Wang¹, F. E. Maas² ² Helmholtz Institute Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany

Preliminary Result Application

< A >

Motivation I: Internal structure and proton radius

Measurement of Proton Electromagnetic Form Factors

L. Xia et al

Inroduction

Motivation I Motivation II

Method

 $\begin{array}{l} \text{Measurement of}\\ \text{cross section and}\\ | \textit{G}_{\textit{E}} / \textit{G}_{\textit{M}} |\\ \text{Cross section}\\ \text{and effective Ff}\\ | \textit{G}_{\textit{E}} / \textit{G}_{\textit{M}} | \text{ and}\\ | \textit{G}_{\textit{M}} | \end{array}$

Summary

- The internal structure of hadrons are not well understood.
- Form factors (FF) are fundamental hadron structure observables, describe dynamical properties of hadrons Nature 466, 213 (2010).
 - At low q^2 : charge distribution and magnetization.
 - At higher q^2 : dynamics, quark distribution.

Vector current, two FFs (2S+1):

The precise measurement of FFs in the TL region may also have a very positive impact on theoretical estimates of the proton radius Eur. Phys. J. A (2012) 48: 151, Phys. Rev. Lett. 114, 232301 (2015), Phys. Rep. 550-551, 1 (2015).

Motivation II: Expected theory and remaining puzzles

Measurement of Proton Electromagnetic Form Factors

L. Xia et al

Inroduction

Motivation II

Method

 $\begin{array}{l} \text{Measurement of}\\ \text{cross section and}\\ |\, {\cal G}_E \,/\, {\cal G}_M \,|\\ \text{Cross section}\\ \text{and effective FF}\\ |\, {\cal G}_E \,/\, {\cal G}_M \,| \text{ and}\\ {\cal G}_M \,| \end{array}$

Summary

- The extrapolation to $q^2 = 0$ in the SL region can be improved with an interpolation with TL constraints through the use of dispersion analysis when determining the charge and magnetic radii.
- From threshold to 3 GeV, it is expected to observe complex effects Phys. Rev. Lett. 114, 232301 (2015):
 - Highly relativistic formation picture expressed in terms of quarks and gluons coexists,
 - Non-relativistic interactions of two slow hadrons leaving the formation zone.
- Reveal the structure around 2.25 GeV and 3.0 GeV observed by BABAR Phys. Rev. D 87, 092005 (2013) and Phys. Rev. D 88, 072009 (2013).
- Clarify whether the |G_E/G_M| consistent with BABAR Phys. Rev.
 D 87, 092005 (2013) or PS170 Nucl.
 Phys. B411 (1994) 3.

Disagreement between BABAR and PS170.

・ 戸 ・ ・ ヨ ・ ・

Method

Measurement of Proton Electromagnetic Form Factors

L. Xia et al

Inroduction

Motivation I Motivation II

Method

Measurement of cross section and $|G_E/G_M|$ Cross section and effective FF $|G_E/G_M|$ and

Summary

Particle identification

- At (2.0, 2.05, 2.1, 2.125, 2.15) GeV, use dE/dx, normalized pulse height:
 - normPH >(3.0, 2.5, 2.0, 1.8, 1.7).
- At (2.175 ${\sim}3.08)$ GeV, use dE/dx and TOF

Momentum separation for p and p
 Signal region:

 $p_{mean} - 4\sigma < p_{cm}(p, \bar{p}) < p_{mean} + 3\sigma$ p_{mean} and σ are from double gaussian fit to momentum of MC.

June 10, 2018 4/7

Cross section of $e^+e^- \to p\bar{p}$ and effective form factor

Measurement of Proton Electromagnetic Form Factors

L. Xia et al

Inroduction

Motivation I Motivation II

Method

Measurement of cross section an $|G_E/G_M|$

Cross section and effective FF $\left| \begin{array}{c} G_{E} \ / \ G_{M} \end{array} \right|$ and

Summary

 \blacksquare 1.034 \sim 157.204 $pb^{-1},$ from 22 energy points 2.0 \sim 3.08 GeV. \blacksquare Strategy:

• In TL region:

$$\frac{d\sigma_{p\bar{p}}(s)}{d\Omega} = \frac{\alpha^2\beta C}{4s} [|G_M(s)|^2 (1 + \cos^2\theta_p) + \frac{4m_p^2}{s} |G_E(s)|^2 \sin^2\theta_p]$$

• Assume $|G(s)| = |G_E(s)| = |G_M(s)|$, the effective FF is

Measurement of $|G_E/G_M|$ and magnetic FF

Measurement of Proton Electromagnetic Form Factors

L. Xia et al

Inroduction

Motivation I Motivation I

Method

Measurement of cross section and $|G_E/G_M|$ Cross section and effective FF $|G_E/G_M|$ and $G_M|$

Summary

Strategy:

• Fit on the polar angular distribution of proton:

$$\frac{dN}{\epsilon(1+\delta) \times d\cos\theta_p} = \frac{\mathcal{L}\hbar c\pi \alpha^2 \beta(s) \mathcal{C}(s)}{2s} |G_M(s)|^2 [(1+\cos^2\theta_p) + \frac{4m_p^2}{s} |\frac{G_E}{G_M}|(s)^2 (1-\cos^2\theta_p)]$$

• $|G_M|$ can be extracted from formula below:

Summary

- Measurement of Proton Electromagnetic Form Factors
 - L. Xia et al
- Inroduction Motivation I Motivation II
- Method
- $\begin{array}{l} \mbox{Measurement of } \\ \mbox{cross section and} \\ | \mbox{G_E} / \mbox{G_M} | \\ \\ \mbox{Cross section } \\ \mbox{and effective FF} \\ \\ | \mbox{G_E} / \mbox{G_M} | \\ \\ \mbox{G_M} | \\ \mbox{and } \end{array}$
- Summary

- 0.688 fb⁻¹, 22 energies, 2.0 to 3.08 GeV,
- Uncertainty:

 σ_{born} : 3.0% ~ 23.5%, |G|: 1.7% ~ 11.8%, | G_E/G_M |: ~10% for lower energy points, | G_M |: 1.8% ~ 3.6%.

- Time-like region, an unprecedented accuracy Especially $|G_E/G_M|$ providing an uncertainty comparable to the space-like region for the first time.
- The structures in the σ_{born}:
 3.0 GeV: not be observed, 2.25 GeV: cannot be resolved.
- Our measurement of $|G_E/G_M|$ strongly favors BABAR's compared to that of PS170.