Progress on PWA of $\mathbf{D}^{0} \rightarrow \mathrm{~K}_{\mathbf{S}}^{0} \pi^{+} \pi^{-} \pi^{0}$

Pan Yue ${ }^{\text {a) }} \quad \mathrm{Lu} \mathrm{Yu}{ }^{\text {b) }} \quad$ Dong Liaoyuan ${ }^{\text {b }}$
Li Haibo ${ }^{\text {b) }} \quad$ Peng Haipinga)
a) University of Science and Technology of China
b) Institute of High Energy Physics Chinese Academy of Sciences

$\mathbf{D}^{0} \rightarrow \mathbf{K}_{\mathrm{S}}^{0} \pi^{+} \pi^{-} \pi^{0}$

$\mathbf{D}^{0} \rightarrow \mathbf{K}_{\mathbf{S}}^{\mathbf{0}} \pi^{+} \pi^{-} \pi^{0}$

Amplitude Analysis

> Likelihood Construction

It is a fit method;
MINUIT is used to determined the fit parameters;
Background is subtracted with negative weight method.

$$
\ln L=\sum_{i}^{N_{\text {data }}} w_{i}^{\text {data }} \ln S\left(a_{i}, p_{j}\right)-\sum_{i}^{N_{b k g}} w_{i}^{b k g} \ln S\left(a_{i}, p_{j}\right)
$$

PDF is calculated by

$$
S\left(a_{i}, p_{j}\right)=\frac{\epsilon\left(p_{j}\right)\left|A\left(a_{i}, p_{j}\right)\right|^{2} R_{4}\left(p_{j}\right)}{\int \epsilon\left(p_{j}\right)\left|A\left(a_{i}, p_{j}\right)\right|^{2} R_{4}\left(p_{j}\right) d p_{j}}
$$

4-momentum dependent
$\epsilon\left(p_{j}\right)$: efficiency; $R_{4}\left(p_{j}\right)$: four-body phase space; $A\left(a_{i} p_{j}\right):$ total amplitudes.

$$
M \text { integration } \frac{1}{N_{m c}} \sum_{j}^{N_{m c}}\left|A\left(a_{i}, p_{j}\right)\right|^{2}
$$

Amplitude Analysis

$>$ Amplitude Construction

Total amplitudes is modeled as the sum over all the partial wave amplitudes;

$$
A\left(a_{i}, p_{j}\right)=\sum_{i} a_{i} A_{i}\left(p_{j}\right)
$$

$a_{i}=\rho_{i} e^{i \phi_{i}}:$ the complex coefficient; $A_{i}\left(p_{j}\right)$: the $\mathrm{i}^{\text {th }}$ partial wave amplitude.

$$
A_{i}\left(p_{j}\right)=P_{i}^{1}\left(p_{j}\right) P_{i}^{2}\left(p_{j}\right) S_{i}\left(p_{j}\right) F_{i}^{1}\left(p_{j}\right) F_{i}^{2}\left(p_{j}\right) F_{i}^{D}\left(p_{j}\right)
$$

- $P_{i}^{1}(p j)$ and $P_{i}^{2}(p j)$ are the propagators of intermediate resonances 1 and 2;
- $F_{i}^{1}(p j), F_{i}^{2}(p j)$ and $F_{i}^{D}(p j)$ are the Blatte-Weisskopf barriers (PRD 86, 010001 (2012));
- $S_{i}\left(p_{j}\right)$ is the spin factor and constructed with the covariant tensors.
(Eur. Phys. J. A16, 537 (1992))

A Trick to Save Computing Resource

$>$ PDF is calculated by

$$
S\left(a_{i}, p_{j}\right)=\frac{\epsilon\left(p_{j}\right)\left|A\left(a_{i}, p_{j}\right)\right|^{2} R_{4}\left(p_{j}\right)}{\int \epsilon\left(p_{j}\right)\left|A\left(a_{i}, p_{j}\right)\right|^{2} R_{4}\left(p_{j}\right) d p_{j}}
$$

$\epsilon\left(p_{j}\right)$: efficiency; $\quad R_{4}\left(p_{j}\right)$: four-body phase space; $A\left(a_{i} p_{j}\right)$: total amplitudes.

$$
\xrightarrow[\text { MCintegration }]{ } \frac{1}{N_{m c}} \sum_{j}^{N_{m c}}\left|A\left(a_{i}, p_{j}\right)\right|^{2}
$$

4-momentum dependent

$$
\begin{aligned}
\frac{1}{N_{g, p h}} \sum_{j}^{N_{s, p h}}\left|A\left(a_{i}, p_{j}\right)\right|^{2} & =\frac{1}{N_{g, p h}} \sum_{j}^{N_{s, p h}} \sum_{\alpha} a_{\alpha} A_{\alpha}\left(p_{j}\right) \sum_{\beta} a_{\beta} A_{\beta}^{*}\left(p_{j}\right) \\
& =\frac{1}{N_{g, p h}} \sum_{\alpha, \beta} a_{\alpha} a_{\beta} \sum_{j}^{N_{s, p h}} A_{\alpha}\left(p_{j}\right) A_{\beta}^{*}\left(p_{j}\right) \begin{array}{l}
\text { Here, presume the masses and } \\
\text { widths of resonances are fixed }
\end{array} \\
& =\frac{1}{N_{g, p h}} \sum_{\alpha, \beta} a_{\alpha} a_{\beta} U_{\alpha, \beta},
\end{aligned}
$$

Projection

Projection

- data
- total fit
$-\mathbf{K}^{*}(892)^{-} \rho^{+}$
$-\overline{\mathbf{K}^{*}}(892)^{0} \rho^{0}$
$-\mathrm{K}_{1}^{-}(1270) \pi^{+}, \mathrm{K}_{1}^{-}(1270) \rightarrow \rho^{-} \overline{\mathrm{K}^{0}}$
$-\mathbf{K}_{1}^{*}(1270) \pi^{+}, K_{1}(1270) \rightarrow K^{*} \pi$
$--\overline{\mathbf{K}_{1}^{0}}(1270) \pi^{0}, \overline{\mathbf{K}_{1}^{0}}(1270) \rightarrow \rho^{0} \overline{\mathbf{K}^{0}}$
$--\overline{\mathbf{K}_{1}^{0}}(1270) \pi^{0}, \overline{\mathbf{K}_{1}^{0}}(1270) \rightarrow \mathbf{K}^{*} \pi^{+}$
$-=\overline{K^{0}} \mathrm{a}_{1}^{0}(1260)$
$\overline{K_{1}^{0}}(1400) \pi^{0}, \overline{K_{1}^{0}}(1400) \rightarrow K^{*^{-}} \pi^{+}$
- - PHSP

Amplitude Analysis

$D^{0} \rightarrow K^{*-} \rho^{+}$	$D^{0}[S] \rightarrow K^{*-} \rho^{+}$	
	$D^{0}[P] \rightarrow K^{*-} \rho^{+}$	
	$D^{0}[D] \rightarrow K^{*-} \rho^{+}$	
$D^{0} \rightarrow \bar{K}^{* 0} \rho^{0}$	$D^{0}[S] \rightarrow \bar{K}^{* 0} \rho^{0}$	
	$D^{0}[P] \rightarrow \bar{K}^{* 0} \rho^{0}$	
	$D^{0}[D] \rightarrow \bar{K}^{* 0} \rho^{0}$	
$D^{0} \rightarrow K_{1}^{-}(1270) \pi^{+}$	$D^{0} \rightarrow K_{1}^{-}(1270) \pi^{+}, K_{1}^{-}(1270)[S] \rightarrow K^{*-} \pi^{0}$	
	$D^{0} \rightarrow K_{1}^{-}(1270) \pi^{+}, K_{1}^{-}(1270)[D] \rightarrow K^{*-} \pi^{0}$	
	$D^{0} \rightarrow K_{1}^{-}(1270) \pi^{+}, K_{1}^{-}(1270)[S] \rightarrow \bar{K}^{* 0} \pi^{-}$	
	$D^{0} \rightarrow K_{1}^{-}(1270) \pi^{+}, K_{1}^{-}(1270)[D] \rightarrow \bar{K}^{* 0} \pi^{-}$	
	$D^{0} \rightarrow K_{1}^{-}(1270) \pi^{+}, K_{1}^{-}(1270)[S] \rightarrow \bar{K}^{0} \rho^{-}$	
	$D^{0} \rightarrow K_{1}^{-}(1270) \pi^{+}, K_{1}^{-}(1270)[D] \rightarrow \bar{K}^{0} \rho^{-}$	
$D^{0} \rightarrow \bar{K}_{1}^{0}(1270) \pi^{0}$	$D^{0} \rightarrow \bar{K}_{1}^{0}(1270) \pi^{0}, \bar{K}_{1}^{0}(1270)[S] \rightarrow K^{*-} \pi^{+}$	
	$D^{0} \rightarrow \bar{K}_{1}^{0}(1270) \pi^{0}, \bar{K}_{1}^{0}(1270)[D] \rightarrow K^{*-} \pi^{+}$	
	$D^{0} \rightarrow \bar{K}_{1}^{0}(1270) \pi^{0}, \bar{K}_{1}^{0}(1270)[S] \rightarrow \bar{K}^{0} \rho^{0}$	
	$D^{0} \rightarrow \bar{K}_{1}^{0}(1270) \pi^{0}, \bar{K}_{1}^{0}(1270)[D] \rightarrow \bar{K}^{0} \rho^{0}$	
$D^{0} \rightarrow \bar{K}^{0} a_{1}^{0}(1260)$	$D^{0} \rightarrow \bar{K}^{0} a_{1}^{0}(1260), a_{1}^{0}(1260)[S] \rightarrow \rho^{+} \pi^{-}$	
	$D^{0} \rightarrow \bar{K}^{0} a_{1}^{0}(1260), a_{1}^{0}(1260)[D] \rightarrow \rho^{+} \pi^{-}$	
	$D^{0} \rightarrow \bar{K}^{0} a_{1}^{0}(1260), a_{1}^{0}(1260)[S] \rightarrow \rho^{-} \pi^{+}$	C-G coefficient
	$D^{0} \rightarrow \bar{K}^{0} a_{1}^{0}(1260), a_{1}^{0}(1260)[D] \rightarrow \rho^{-} \pi^{+}$	
$D^{0} \rightarrow \bar{K}_{1}^{0}(1400) \pi^{0}$	$D^{0} \rightarrow \overline{\bar{K}}_{1}^{0}(1400) \pi^{0}, \bar{K}_{1}^{0}(1400)[S] \rightarrow K^{*-} \pi^{+}$	
	$D^{0} \rightarrow \bar{K}_{1}^{0}(1400) \pi^{0}, \bar{K}_{1}^{0}(1400)[D] \rightarrow K^{*-} \pi^{+}$	

