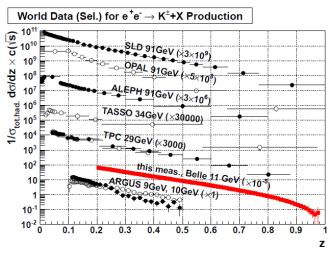

Inclusive $\pi^0 \& K_S^0$ Production at 2.800GeV

Xinlei Gao, Wenbiao Yan, Zhe Zeng, Zhihong Wang

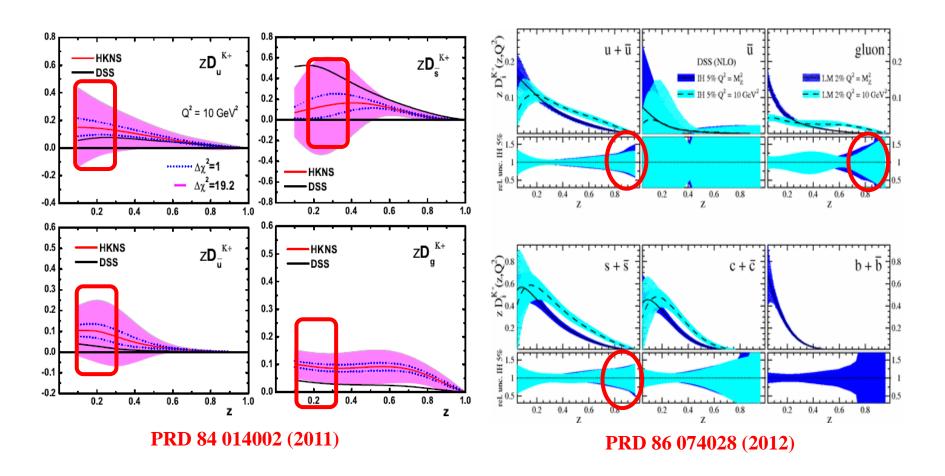
University of Science and Technology of China State Key Laboratory of Particle Detection and Electronics


Fragmentation function

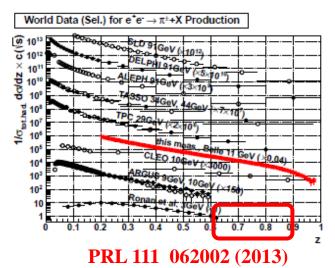
• Fragmentation function (FF) $D_q^h(z)$: probability that hadron h is found in the debris of a parton carrying a fraction z of parton's energy


- FF: QCD first principle (NOT YET);
 - > FF evolution function: DGLAP (similar to that of PDF)
 - \triangleright Fitting: parametrization & experimental data (e⁺e⁻, SIDIS, pp and p \bar{p})

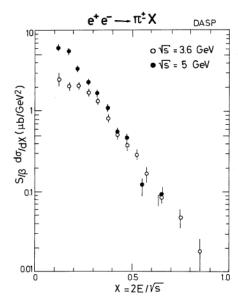
$e^+e^- \rightarrow K + X$


PRL 111 062002 (2013)

- Lack of data at **low energy scale**
- PLUTO: about 35 years ago
 - ➤ Stat. uncertainty: 18-41%

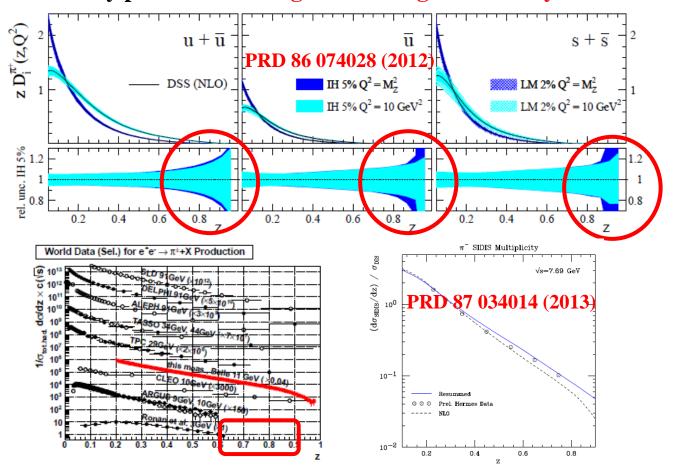


PLB 67 367 (1977)


Kaon Fragmentation function

$e^+e^- \rightarrow \pi + X$

- Lack of data at low energy scale
 - ➤ BESIII energy: [2, 4.6]GeV
 - ➤ Poor precision
- Lack data at high $z=2E_{hadron}/\sqrt{s}$



NPB 148 189 (1979)

- DASP: about 35 years ago
- Stat. uncertainty: 18%

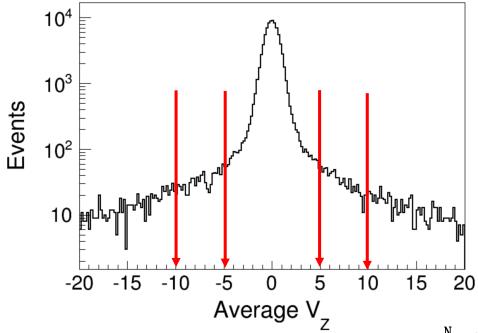
Pion Fragmentation function

• Theory predictions at high z: with lage uncerainty

Data Samples

- BOSS 664p01
- Data sets
 - ✓ Collision data at **2.800GeV** (3.753 pb⁻¹)
 - ✓ Hadronic event: 1 M via generator ConExc
- Physics QED background: Monte Carlo data sets
 - ✓ Bhabha: **6M** via generator **Babayaga**
 - \checkmark (γ) $\mu^+\mu^-$: **6M** via generator **Babayaga**
 - \checkmark (γ) $\gamma \gamma$: 6M via generator Babayaga
 - \checkmark e⁺e⁻ \rightarrow e⁺e⁻+X: 6M via generator **BESTWOGAM**
- Non-physics background
 - ✓ Beam-gas, beam-wall, cosmic, and so on
 - ✓ Use sideband method

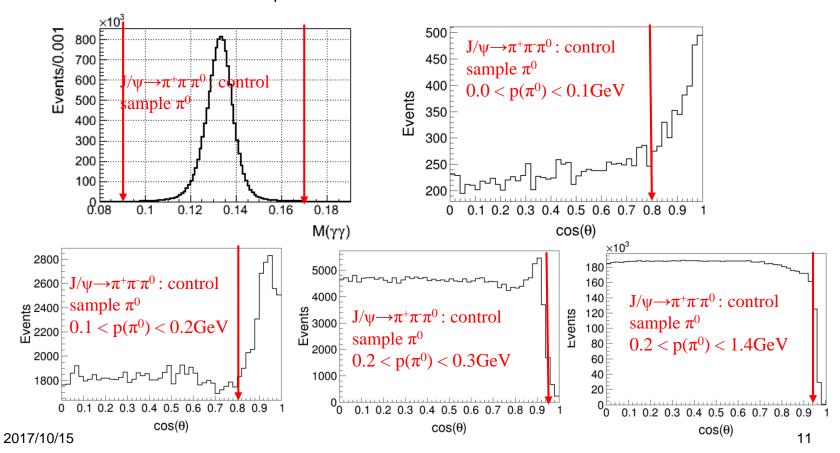
Hadronic event selection


Hadronic event selection, π^0 and K_S^0 production

- ① Select hadronic event ② π^0 and K_S^0 reconstruction
- Remove Bhabha and (γ) γ events with EMC information
 - ✓ Two showers with $1^{st}/2^{nd}$ energy deposition $|\theta_1+\theta_2-180^{\circ}|<10^{\circ}$ and $E>0.65*E_{beam}$
- Good track selection
 - ✓ |Vr| < 0.5, |Vz| < 1, $|\cos \theta| < 0.93$
 - \checkmark Momentum < 0.94* E_{beam}
 - \checkmark (dE/dx_{mea}-dE/dx_{proton})/ σ _{proton}<10
 - ✓ Veto election with Momentum > $0.65*E_{beam}$ && e/p > 0.8
 - ✓ Veto gamma conversion with M(e,e) < 100MeV && Open angle<15°
 - ✓ $Prob(E) / (Prob(E) + Prob(\pi) + Prob(K) + Prob(P)) < 0.25$
- good photon selection
 - \checkmark E_{barrel} > 25MeV; E_{endcap} > 50MeV
 - ✓ $0 \le TDC \le 14(\times 50 \text{ns});$
- Isolated photon selection
 - \checkmark E_{barrel} > 25MeV; E_{endcap} > 50MeV
 - ✓ $0 \le TDC \le 14(\times 50 \text{ ns});$
 - ✓ Angle $> 20^{\circ}$ && E_{deposited} > 100 MeV

Hadronic event selection

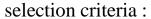
- Event level selection
 - ✓ Number of good track $N_{good}>=2$
 - 1. Event with $N_{good}=2$
 - \checkmark veto $\mid \theta_1 + \theta_2 180^\circ \mid <15^\circ \&\& \mid |\phi_1 \phi_2| 180^\circ \mid <10^\circ$ number of Isolated photon N >= 2
 - 2. Event with $N_{good}=3$
 - ✓ Veto, angle between $1^{st}/2^{nd}$ energy track $\mid \theta_1 + \theta_2 180^{\circ} \mid <15^{\circ}$ and $\mid |\phi_1 \phi_2| 180^{\circ} \mid <10^{\circ}$

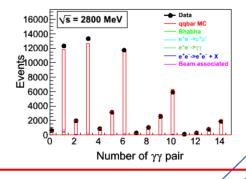

Non-physics background

- Average Z-direction vertex for a event $V_z = \sum_{i=1}^{N_{good}} V_z^i / N_{good}$
 - Non-physics background: $5.0 < |V_z| < 10.0$ cm

π^0 reconstruction

- π^0 selection: loop all the neutral tracks from hadronic selection
 - ✓ $0.09 \text{GeV} < M(\gamma \gamma) < 0.17 \text{GeV}$
 - < $|\cos\theta_{\gamma\pi}| < 0.95 \text{ (for } 0.2 < p(\pi^0) < 1.4 \text{GeV)}$
 - \checkmark |cos $\theta_{\gamma\pi}$ | < 0.8 (for 0.0 < p(π^0) < 0.2GeV)

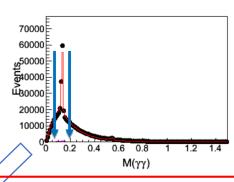

Miscombine of π^0


 π^0 selection criteria:

- ✓ $0.09 \text{GeV} < M(\gamma \gamma) < 0.17 \text{GeV}$
- ✓ $|\cos\theta_{\gamma\pi}| < 0.95 \text{ (for } 0.2 < p(\pi^0) < 1.4 \text{GeV})$
- $|\cos \theta_{\gamma \pi}| < 0.8 \quad (\text{for } 0.0 < p(\pi^0) < 0.2 \text{GeV})$

Distribution about π^0 candidates

 \checkmark $|\cos\theta_{\gamma\pi}| < 0.95$


7000

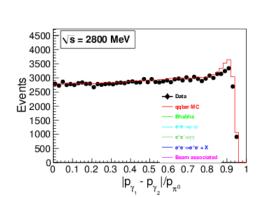
6000

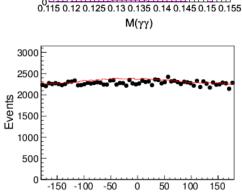
\$ 5000 4000

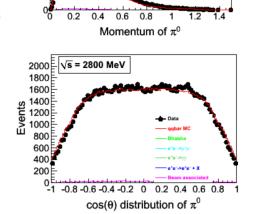
й 3000

1000

5000 F

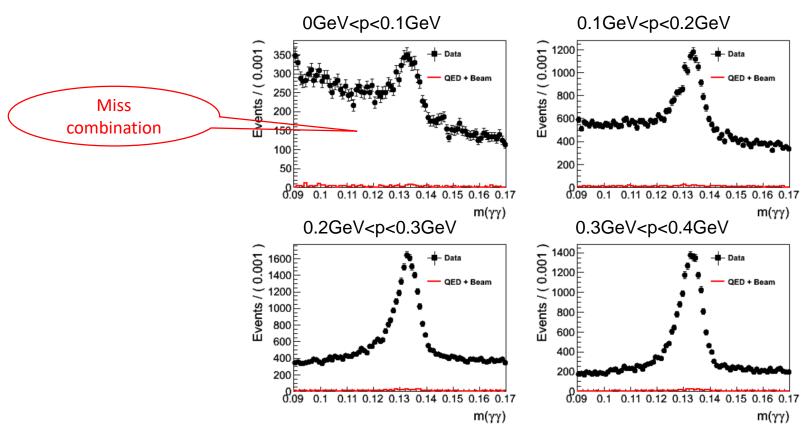

4000


2000 Events


1000

selection criteria:

- ✓ $0.115 \text{GeV} < M(\gamma \gamma) < 0.155 \text{GeV}$
- \checkmark $|\cos\theta_{\gamma\pi}| < 0.95$



 ϕ distribution of π^0

Backgrounds and π^0 candidates

QED and beam associated background are flat

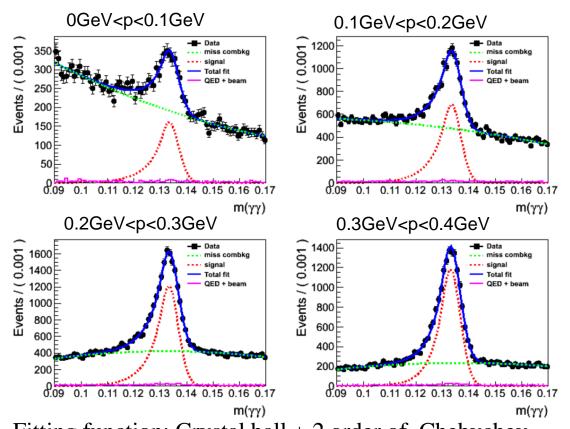
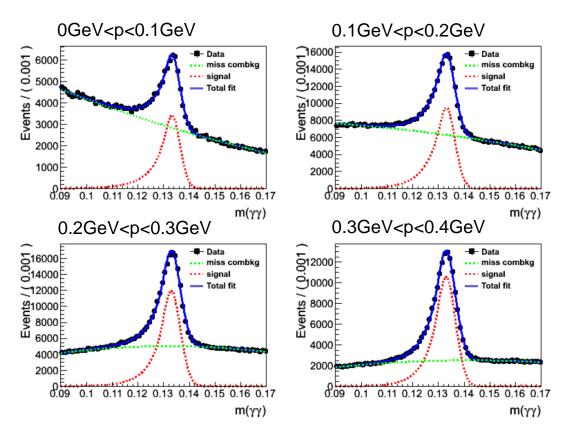

Backgrounds and π^0 candidates

Table 4: Background events of π^0 candidates

	π^0 candidate events
Source	(including miss combination)
	@[0.09,0.17] GeV mass region
$e^+e^- o (\gamma)e^+e^-$	60.6 (0.032%)
$e^+e^- o (\gamma)\mu^+\mu^-$	8.2 (0.004%)
$e^+e^- o (\gamma)\gamma\gamma$	3.1 (0.002%)
$e^+e^- \rightarrow (\gamma)e^+e^- + X$	24.2 (0.013%)
Beam associated	2755 (1.472%)
Experiment data	187179


Most contribution come from beam associated background and the branching ratio is smaller than 2%

Data: π^0 fitting at 2.800GeV

Fitting function: Crystal ball + 2 order of Chebychev

MC: π^0 fitting at 2.800GeV

Fitting function: Crystal ball + 2 order of Chebychev

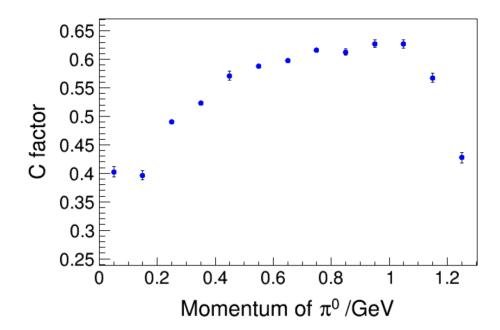
Inclusive π^0 production

$$\frac{1}{\sigma_{had}} \cdot \frac{d\sigma_{\pi^0}}{dp} = C \cdot \frac{1}{Br(\pi^0 \to \gamma\gamma)} \cdot \frac{1}{N_{had}^{exp}} \cdot \frac{N_{\pi^0}^{exp}(p)}{\Delta p}$$

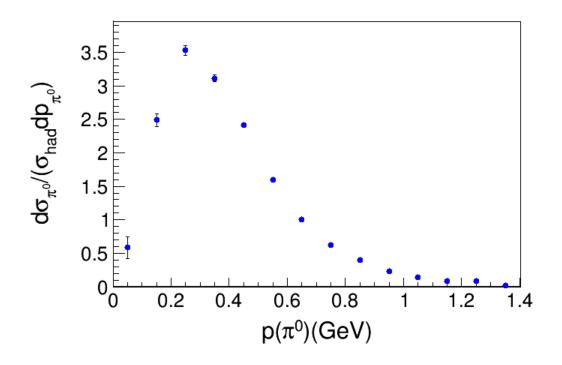
 N_{had}^{exp} : Observed hadronic event number

 $N_{\pi^0}^{exp}(p)$: Fitted π^0 number in a momentum bin

 Δp : Bin width in a momentum bin (100 MeV)


C: Correction factor in a momentum bin

π^0 : bin-to-bin correction


$$C = \frac{N_{\pi^0}^{truth}/N_{had}^{truth} @ MC without ISR}{N_{\pi^0}^{det}/N_{had}^{det} @ MC with ISR}$$

 $N_{\pi^0}^{truth}$ π^0 from MC Truth

C corrects for event selection, π^0 reconstruction, ISR and so on.

Inclusive π^0 production

$$\frac{1}{\sigma_{had}} \cdot \frac{d\sigma_{\pi^0}}{dp} = C \cdot \frac{1}{Br(\pi^0 \to \gamma\gamma)} \cdot \frac{1}{N_{had}^{exp}} \cdot \frac{N_{\pi^0}^{exp}(p)}{\Delta p}$$

π^0 systematic study

hadron event selection

Source	Cut	Default	Alternative	
veto Bhabha	E_{ratio}	$0.65 \cdot E_{beam}$	$0.6 \sim 0.7 \cdot E_{beam}$	
and $\gamma\gamma$	$\Delta heta$	10°	5° ∼ 15°	
good hadronic	Vr	0.5 cm	1.0 cm	
tracks	p(track)	$0.94 \cdot p_{beam}$	$0.92 \sim 0.96 \cdot p_{beam}$	
determination	dE/dx cut	10	15	
	E/p ratio	0.8	$0.75 \sim 0.85$	
	Bhabha momentum limit	$0.65 \cdot p_{beam}$	$0.6 \sim 0.7 \cdot p_{beam}$	
	isolated photon angle	20°	15° ~ 25°	
	isolated photon energy	100 MeV	75 ~ 125 MeV	
	gamma conversion angle	15°	10° ~ 20°	
	gamma conversion mass	100 MeV	80 ~ 120 MeV	
	PID ratio value	0.25	$0.1 \sim 0.4$	
2 prong events	$\Delta \theta$	15°	10° ~ 20°	
	$\Delta\phi$	10°	5° ∼ 15°	
3 prong events	$\Delta heta$	15°	10° ~ 20°	
	$\Delta\phi$	10°	5° ~ 15°	

π^0 systematic study

Fitting uncertainty and model dependent

1, Fitting range

Default fitting range [0.09, 0.17] GeV

Tight fitting range: [0.095, 0.165] GeV Loose fitting range: [0.085, 0.175] GeV

Pick up the one which have large differences with default result as the fitting range uncertainty

2, Fitting function

Default fitting function: Crystal ball + 2 order of Chebychev Change to: Crystal ball + 3 order of Chebychev

Take the difference as fitting function uncertainty

3, Model dependent (On going)

Use the qqbar MC generated by Luarlw tuned by Prof. Hu and take the difference with ConExc as model uncertainty.

π^0 systematic study π^0 cut criteria uncertainty

π^0 default cut criteria:

$$|\cos \theta_{\gamma \pi}| < 0.95 \text{ (for } 0.2 < p(\pi^0) < 1.4 \text{GeV})$$

$$|\cos \theta_{y\pi}| < 0.8 \quad \text{(for } 0.0 < p(\pi^0) < 0.2 \text{GeV)}$$

Up the cut criteria:

$$|\cos \theta_{\nu \pi}| < 0.97 \text{ (for } 0.2 < p(\pi^0) < 1.4 \text{GeV})$$

$$|\cos \theta_{\gamma \pi}| < 0.82 \text{ (for } 0.0 < p(\pi^0) < 0.2 \text{GeV)}$$

Down cut criteria:

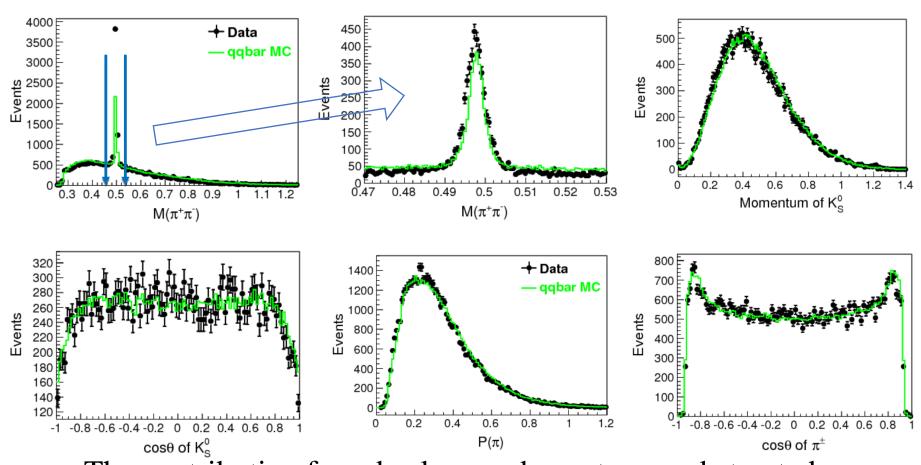
$$|\cos \theta_{v\pi}| < 0.93 \text{ (for } 0.2 < p(\pi^0) < 1.4 \text{GeV})$$

$$√$$
|cosθ_{γπ}|< 0.78 (for 0.0 < p(π⁰) < 0.2GeV)

Take the differences of MC and experiment data as the π^0 reconstruction uncertainty

π^0 systematic study

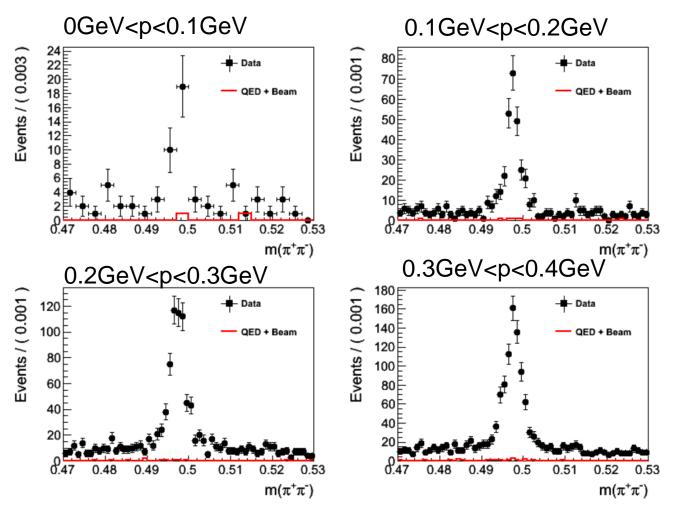
Table 3: Summary of systematic uncertainties (%) for inclusive π^0 production varying with momentum.


moment								
p(GeV)	Hadron event	Hadron track	$\cos\theta$	Fit range	Bkg shape	Sig shape	Photon	Total
0.0-0.1	8.5	6.4	2.4	1.2	4.1	8.8	2.0	14.8
0.1-0.2	10.9	10.1	4.7	3.8	2.6	8.0	2.0	18.2
0.2-0.3	5.1	6.1	0.2	3.5	1.4	2.3	2.0	9.3
0.3-0.4	2.5	4.6	0.8	1.4	1.2	2.6	2.0	6.5
0.4-0.5	1.8	2.1	0.1	0.3	2.0	1.8	2.0	4.3
0.5-0.6	0.4	2.1	0.0	0.4	1.3	3.4	2.0	4.7
0.6-0.7	1.1	2.1	0.4	0.4	0.9	2.8	2.0	4.3
0.7-0.8	1.9	1.7	0.4	0.7	2.1	0.6	2.0	4.0
0.8-0.9	0.9	2.6	2.2	1.9	0.3	3.4	2.0	5.6
0.9-1.0	0.8	2.6	0.9	1.2	1.6	0.9	2.0	4.1
1.0-1.1	1.6	1.0	0.4	0.4	1.2	2.3	2.0	3.8
1.1-1.2	3.0	2.4	0.7	0.4	1.1	2.6	2.0	5.2
1.2-1.3	2.3	1.8	1.4	1.3	2.0	1.1	2.0	4.6
1.3-1.4	26.1	10.0	5.6	2.1	7.4	2.0	2.0	29.7

2nd K_s reconstruction

K_s selection: charged track after hadronic events selection

- ✓ Re-do track selection
 - ➤ |Vr|< 10cm, |Vz|<30cm
 - > Other selection criteria: same
- ✓ PID: Prob π > Prob K and Prob π > Prob P N_{π^+} >=1 and N_{π^-} >=1
- ✓ Second vertex fitting: $L/\sigma_L > 2.0$


K_s candidates distribution

The contribution from background events are substracted.

201 Experiment data and qqbar MC are consistent with each other

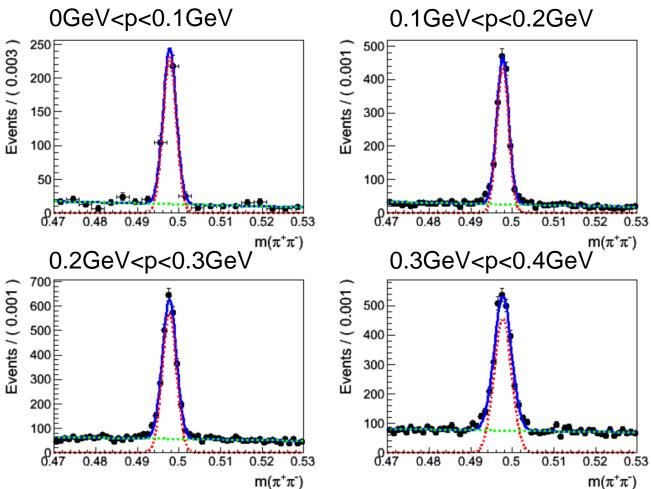
Data: K_s signal and background @2.8 GeV

The bkg include e⁺e⁻ \rightarrow (γ)e⁺e⁻, (γ) $\mu^+\mu^-$, (γ) $\gamma\gamma$, (γ) $\tau^+\tau^-$, e⁺e⁻+X 2017/10/15 and non-physics background

Backgrounds and K_S^0 candidates

Table 5: Background events of K_S^0 candidates

	~
	K_S^0 candidate events
Source	(including miss combination)
	@[0.47,0.53] GeV mass region
$e^+e^- \to (\gamma)e^+e^-$	27.0 (0.10%)
$e^+e^- o (\gamma)\mu^+\mu^-$	3.6 (0.01%)
$e^+e^- o (\gamma)\gamma\gamma$	6.7 (0.03%)
$e^+e^- \rightarrow (\gamma)e^+e^- + X$	1.5 (0.01%)
Beam associated	427 (1.63%)
Experiment data	26276


Most contribution come from beam associated background and the uncertainty is smaller than 2% 2017/10/15

Data: Ks fitting @ 2.8 GeV

Fitting function: Gaussian function + one order of Chebychev

MC: K_s fitting @ 2.8 GeV

Fitting function: Gaussian function + one order of Chebychev

Inclusive K_S⁰ production

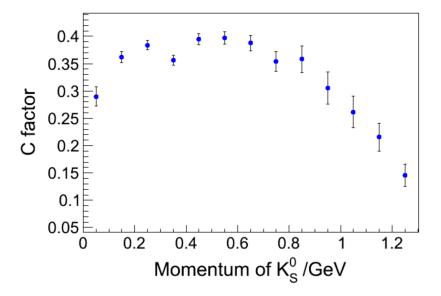
$$\frac{1}{\sigma_{had}} \cdot \frac{d\sigma_{K_S^0}}{dp} = C \cdot \frac{1}{Br(K_S^0 \to \pi^+\pi^-)} \cdot \frac{1}{N_{had}^{exp}} \cdot \frac{N_{K_S^0}^{exp}(p)}{\Delta p}$$

 N_{had}^{exp} Observed hadronic event number

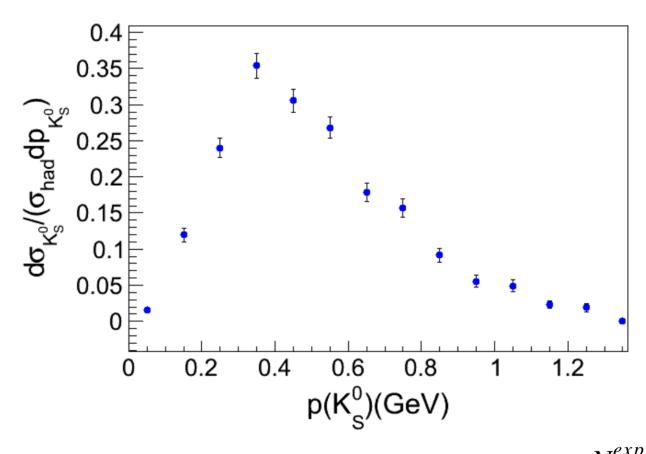
 $N_{K_S^0}^{exp}(p)$ Fitted K_S^0 number in a momentum bin

 Δp Bin width in a momentum bin

C Correction factor in a momentum bin


$\mathbf{K}_{\mathbf{S}}^{\mathbf{0}}$: bin-to-bin correction

$$C = \frac{N_{K_S^0}^{truth}/N_{had}^{truth} @ MC without ISR}{N_{K_S^0}^{det}/N_{had}^{det} @ MC with ISR}$$


 $N_{K_S^0}^{truth}$ K_S⁰ from MC Truth

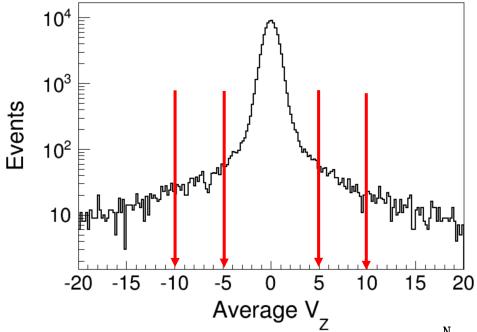
C corrects for event selection, K_S⁰ reconstruction, ISR

and so on.

$\mathbf{K}_{\mathbf{S}}^{\mathbf{0}}$: bin-to-bin correction

$$\frac{1}{\sigma_{had}} \cdot \frac{d\sigma_{K_S^0}}{dp} = C \cdot \frac{1}{Br(K_S^0 \to \pi^+\pi^-)} \cdot \frac{1}{N_{had}^{exp}} \cdot \frac{N_{K_S^0}^{exp}(p)}{\Delta p}$$

Hadronic event selection


Hadronic event selection, π^0 and K_S^0 production

- ① Select hadronic event ② π^0 and K_S^0 reconstruction
- Remove Bhabha and (γ) γ events with EMC information
 - ✓ Two showers with $1^{st}/2^{nd}$ energy deposition $|\theta_1+\theta_2-180^{\circ}|<10^{\circ}$ and $E>0.65*E_{beam}$
- Good track selection
 - \checkmark |Vr|< 0.5, |Vz| < 1, |cos θ | < 0.93
 - ✓ Momentum <0.94*E_{beam}
 - \checkmark (dE/dx_{mea}-dE/dx_{proton})/ σ _{proton}<10
 - ✓ Veto election with Momentum > $0.65*E_{beam}$ && e/p > 0.8
 - ✓ Veto gamma conversion with M(e,e) < 100MeV && Open angle<15°
 - ✓ $Prob(E) / (Prob(E) + Prob(\pi) + Prob(K) + Prob(P)) < 0.25$
- good photon selection
 - \checkmark E_{barrel} > 25MeV; E_{endcap} > 50MeV
 - ✓ $0 \le TDC \le 14(\times 50ns);$
- Isolated photon selection
 - \checkmark E_{barrel} > 25MeV; E_{endcap} > 50MeV
 - ✓ $0 \le TDC \le 14(\times 50 \text{ ns});$
 - ✓ Angle $> 20^{\circ}$ && E_{deposited} > 100 MeV

Hadronic event selection

- Event level selection
 - ✓ Number of good track $N_{good}>=2$
 - 1. Event with $N_{good}=2$
 - \checkmark veto $\mid \theta_1 + \theta_2 180^\circ \mid <15^\circ \&\& \mid |\phi_1 \phi_2| 180^\circ \mid <10^\circ$ number of Isolated photon N >= 2
 - 2. Event with $N_{good}=3$
 - ✓ Veto, angle between $1^{st}/2^{nd}$ energy track $\mid \theta_1 + \theta_2 180^\circ \mid <15^\circ \text{ and } \mid |\phi_1 \phi_2| 180^\circ \mid <10^\circ$

Non-physics background

- Average Z-direction vertex for a event $V_z = \sum_{i=1}^{N_{good}} V_z^i / N_{good}$
 - Non-physics background: $5.0 < |V_z| < 10.0$ cm

2nd K_s reconstruction

K_s selection: charged track after hadronic events selection

- ✓ Re-do track selection
 - ➤ |Vr|< 10cm, |Vz|<30cm
 - > Other selection criteria: same
- ✓ PID: Prob π > Prob K and Prob π > Prob P $N_{\pi_{+}}$ >=1 and $N_{\pi_{-}}$ >=1
- ✓ Second vertex fitting: $L/\sigma_L > 2.0$

K_S^0 systematic study

hadron event selection

Source	Cut	Default	Alternative
veto Bhabha	E_{ratio}	$0.65 \cdot E_{beam}$	$0.6 \sim 0.7 \cdot E_{beam}$
and $\gamma\gamma$	$\Delta heta$	10°	5° ∼ 15°
good hadronic	Vr	0.5 cm	1.0 cm
tracks	p(track)	$0.94 \cdot p_{beam}$	$0.92 \sim 0.96 \cdot p_{beam}$
determination	dE/dx cut	10	15
	E/p ratio	0.8	$0.75 \sim 0.85$
	Bhabha momentum limit	$0.65 \cdot p_{beam}$	$0.6 \sim 0.7 \cdot p_{beam}$
	isolated photon angle	20°	15° ~ 25°
	isolated photon energy	100 MeV	75 ~ 125 MeV
	gamma conversion angle	15°	10° ∼ 20°
	gamma conversion mass	100 MeV	80 ~ 120 MeV
	PID ratio value	0.25	$0.1 \sim 0.4$
2 prong events	$\Delta \theta$	15°	10° ~ 20°
	$\Delta\phi$	10°	5° ∼ 15°
3 prong events	$\Delta \theta$	15°	10° ~ 20°
	$\Delta\phi$	10°	5° ~ 15°

K_S^0 systematic study

hadron event selection

Table 7: Summary of systematic uncertainties for inclusive K_S^0

p(GeV)	Hadron event	Hadron track	Vr cut
0.0-0.1	2.0	2.8	/1.0\
0.1-0.2	1.3	1.7	0.6
0.2-0.3	0.7	1.8	1.9
0.3-0.4	0.6	0.9	1.3
0.4-0.5	0.7	1.7	0.5
0.5-0.6	1.0	1.7	1.8
0.6-0.7	0.9	2.7	3.3
0.7-0.8	1.2	3.8	7.0
0.8-0.9	2.0	2.4	0.4
0.9-1.0	1.9	3.4	9.3
1.0-1.1	3.8	5.1	15.4
1.1-1.2	7.2	4.9	5.0

Nominal cut: Vr = 0.5cm

Alternative cut: Vr = 1.0cm

K_S^0 systematic study

hadron event selection

Table 8: Comparison of K_S^0 events using different Vr cut

Momentum	MC				Exp.D	ata
p(GeV)	0.5(cm)	1.0(cm)	Difference(%)	0.5(cm)	1.0(cm)	Difference(%)
0.0-0.1	310	323	4.2	25	26	4.0
0.1-0.2	1584	1744	10.1	243	269	10.7
0.2-0.3	2424	2733	12.3	518	594	14.7
0.3-0.4	2406	2801	16.4	707	811	14.7
0.4-0.5	2423	2813	16.1	679	783	15.3
0.5-0.6	1827	2124	16.3	598	682	14.0
0.6-0.7	1282	1570	22.5	388	458	18.0
0.7-0.8	662	827	24.9	311	361	16.1
0.8-0.9	410	521	27.1	184	234	27.2
0.9-1.0	188	275	46.3	95	126	32.6
1.0-1.1	140	206	47.1	72	89	23.6
1.1-1.2	105	148	41.0	27	41	51.9

Considering 2.7cm decay length, the Ks events production increase dramatically when the Vr cut vary from 0.5cm to 1.0cm.

Large differences present between MC and experiment data.

New method

First: K_S^0 selection **Second: Hadron selection**

First: K_S^0 selection: Method A, Method B, Method C, Method D

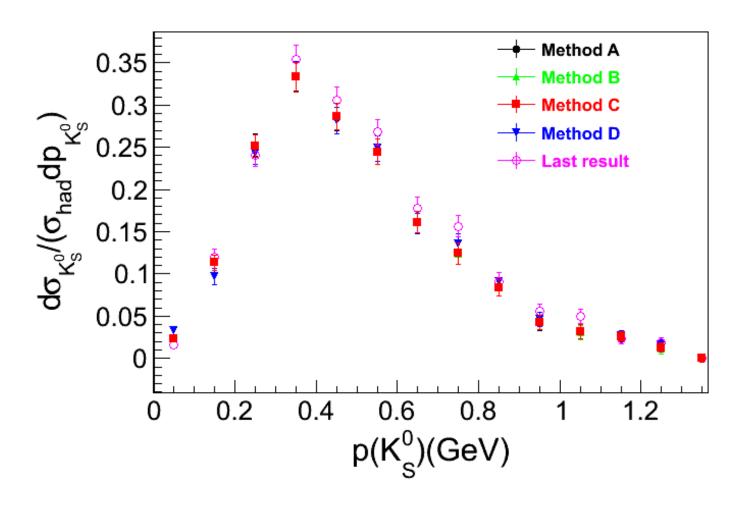
Method A: $\mathbf{K_S}^0$ selection

- Track selection
 - ➤ |Vr|< 10cm, |Vz|<30cm
 - Other selection criteria: the same with hadron selection
- PID: Prob π > Prob K and Prob π > Prob P $N_{\pi+}>=1$ and $N_{\pi-}>=1$
- Second vertex fitting: $L/\sigma_1 > 2.0$

Method B: $\mathbf{K_S}^0$ selection

- Track selection
 - \triangleright |Vr|< 10cm, |Vz|<30cm
 - Other selection criteria: Only include Bhabha remove
- PID: Prob π > Prob K and Prob π > Prob P $N_{\pi+}>=1$ and $N_{\pi-}>=1$
- Second vertex fitting: $L/\sigma_L > 2.0$

Method C: $\mathbf{K_S}^0$ selection


- Track selection
 - |Vr| < 10cm, |Vz| < 30cm
 - No other selection criteria
- ✓ PID: Prob π > Prob K and Prob π > Prob P $N_{\pi+}>=1$ and $N_{\pi_{-}}>=1$
- Second vertex fitting: $L/\sigma_{\rm I} > 2.0$

Method D: K_S^0 selection

- Track selection
 - |Vr| < 10cm, |Vz| < 30cm
 - No other selection criteria
- ✓ No PID: assuming charged tracks are π^{\pm} , $N_{\pi+}>=1$ and $N_{\pi-}>=1$, loop all the pion pairs
- Second vertex fitting: $L/\sigma_{I} > 2.0$

Second: Re-do events selection for Hadronic events

Comparisons of different methods

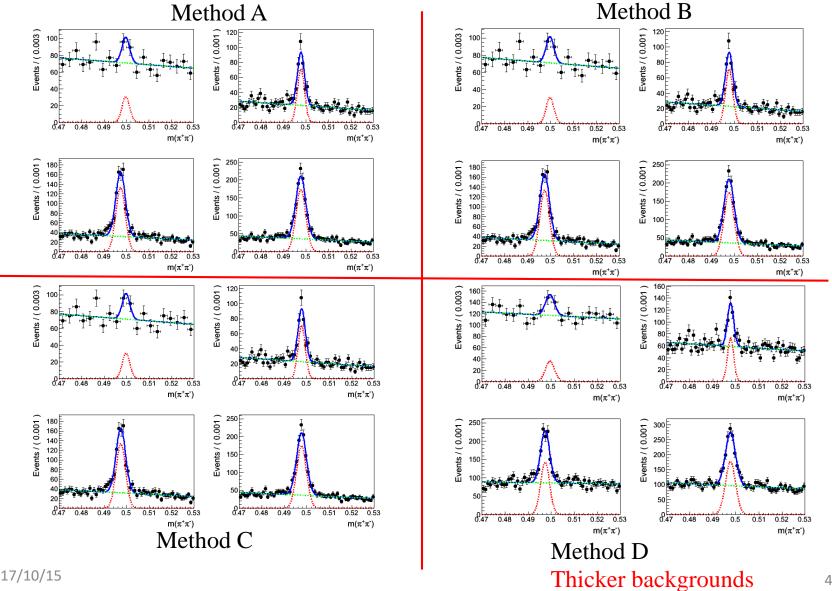
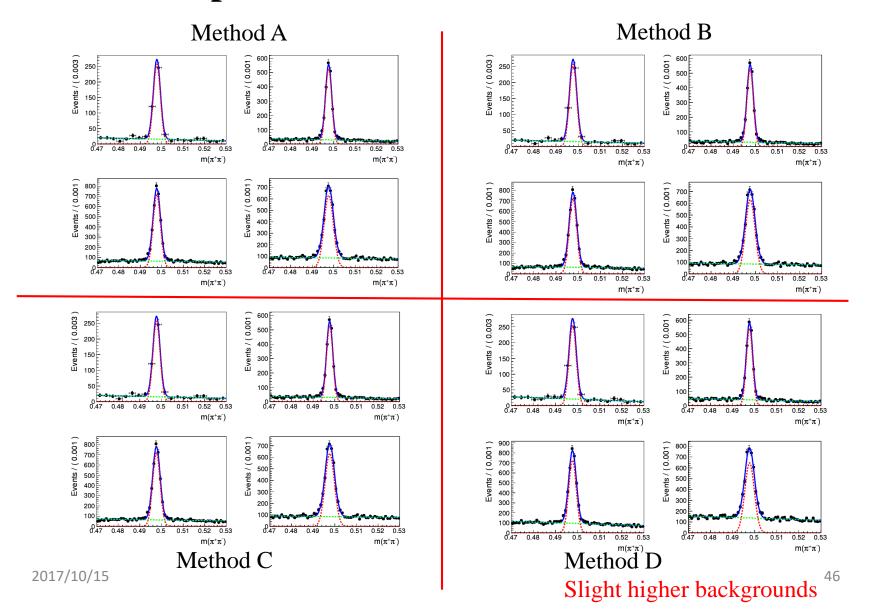
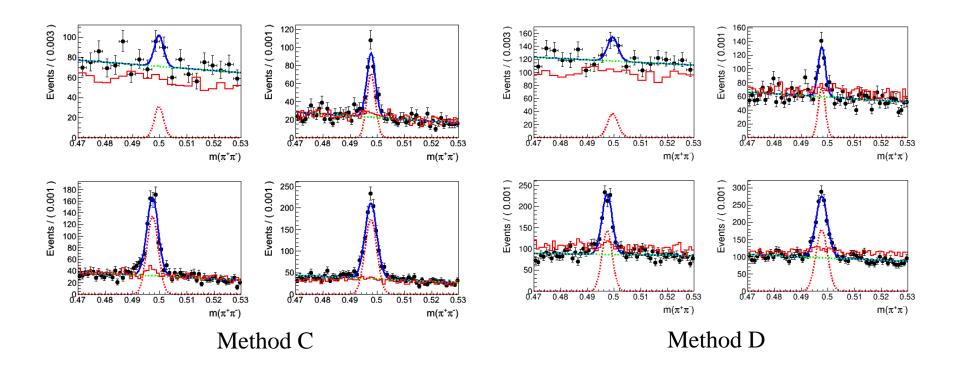

Comparisons of different methods

Table 9: Extracted K_S^0 events and of K_S^0 efficiency varying with momenta


p(GeV)	Method	A	Method	В	Method	С	Method D	
p(GeV)	Exp.data	$\varepsilon(K_S^0)$	Exp.data	$\varepsilon(K_S^0)$	Exp.data	$\varepsilon(K_S^0)$	Exp.data	$\varepsilon(K_S^0)$
0.0-0.1	45.0±15.2	31.2	44.3±15.2	31.2	44.7±15.2	31.2	61.5±22.3	31.0
0.1-0.2	285.2±24.2	41.2	285.7±24.3	41.3	285.6±24.3	41.3	245.1±29.1	41.6
0.2-0.3	711.5±36.5	46.2	711.9±36.4	46.3	711.0±36.4	46.3	695.1±46.1	46.8
0.3-0.4	972.4±40.5	47.7	972.4±40.5	47.9	972.7±40.6	47.9	988.1±50.7	48.6
0.4-0.5	935.3±39.8	53.6	935.8±39.8	53.6	937.3±39.8	53.6	946.5±50.4	55.1
0.5-0.6	856.0±37.0	57.2	855.0±36.9	57.3	854.8±37.0	57.3	886.9±48.4	58.5
0.6-0.7	602.3±31.1	61.3	603.0±31.1	61.4	602.7±31.1	61.4	600.6±43.3	61.7
0.7-0.8	457.0±25.9	60.5	456.9±25.9	60.4	458.1±26.0	60.4	495.7±35.5	60.1
0.8-0.9	311.7±21.2	60.9	311.3±21.1	61.0	312.6±21.2	61.0	354.9±29.8	63.8
0.9-1.0	190.3±16.3	74.8	191.9±16.3	74.8	193.6±16.5	74.8	216.3±23.7	77.1
1.0-1.1	136.7±13.1	74.2	137.6±13.1	74.4	140.7±13.3	74.4	147.5±18.4	76.8
1.1-1.2	87.5±10.2	56.2	88.9±10.3	56.9	89.2±10.5	56.9	102.5±15.4	61.8
1.2-1.3	51.1±7.5	57.7	50.6±0.0	57.9	56.2±9.2	57.9	80.2±19.1	62.6
1.3-1.4	1.3±1.8	47.8	0.9±1.6	48.6	0.0±3.4	48.6	0.0±13.3	54.2

Methods A, B, C almost have the same efficiencies. Method D have slight higher efficiencies.


Comparisons of different methods: Data

Comparisons of different methods: MC

Contribution from the beam-associated backgrounds

Most backgrounds come from beam-associated background and mis-combination

Possible cut to remove the beam-associated backgrounds: 1. angle of $\pi^+\pi^-$

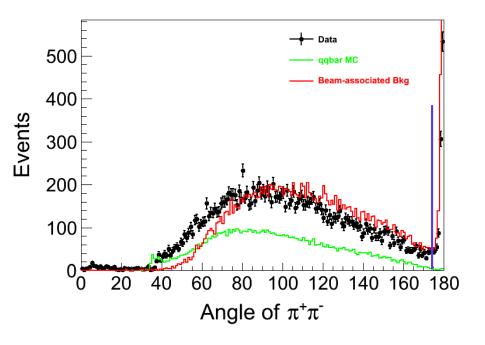
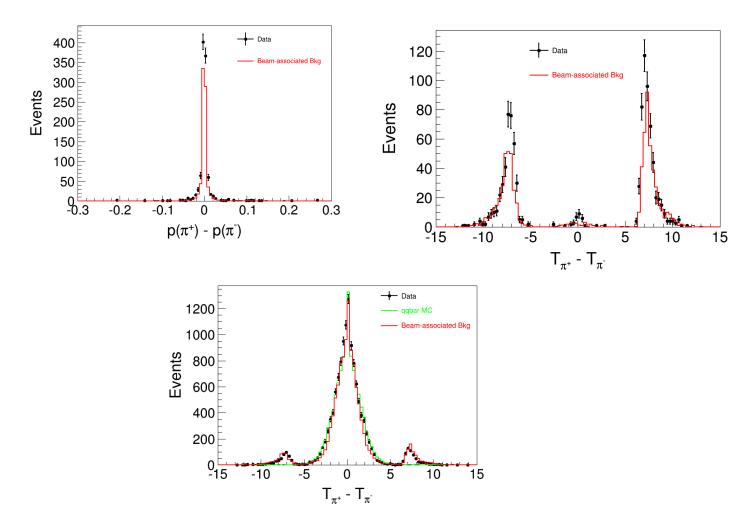
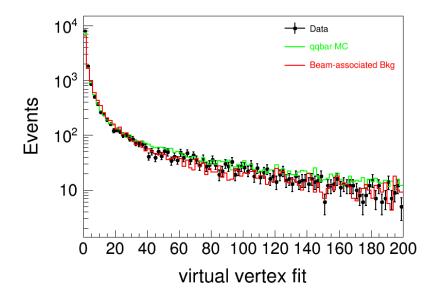
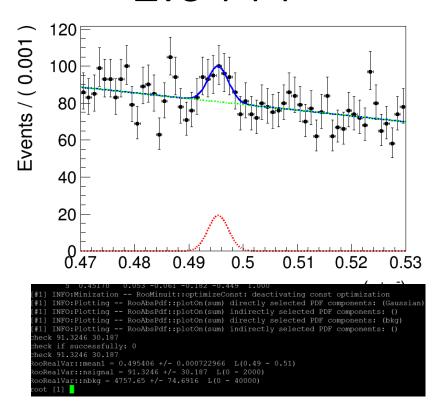





Table 11: Extracted K_S^0 events and of K_S^0 efficiency varying with momenta

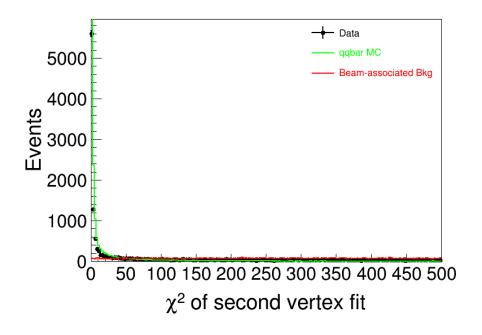
(C. II)	With angle	e cut	Without angle cut (method C)	
p(GeV)	Exp.data	$\varepsilon(K_S^0)$	Exp.data	$\varepsilon(K_S^0)$
0.0-0.1	50.3±19.8	30.3	44.7±15.2	31.2
0.1-0.2	283.8±24.3	41.3	285.6±24.3	41.3
0.2-0.3	711.2±36.5	46.3	711.0±36.4	46.3
0.3-0.4	972.9±40.5	47.9	972.7±40.6	47.9
0.4-0.5	935.4±39.8	53.6	937.3±39.8	53.6
0.5-0.6	854.6±36.9	57.3	854.8±37.0	57.3
0.6-0.7	602.5±31.1	61.4	602.7±31.1	61.4
0.7-0.8	457.8±25.9	60.4	458.1±26.0	60.4
0.8-0.9	311.3±21.1	61.0	312.6±21.2	61.0
0.9-1.0	193.1±16.5	74.8	193.6±16.5	74.8
1.0-1.1	141.1±13.4	74.4	140.7±13.3	74.4
1.1-1.2	89.9±10.5	56.9	89.2±10.5	56.9
1.2-1.3	57.6±9.1	57.9	56.2±9.2	57.9
1.3-1.4	0.0±3.5	48.6	0.0±3.4	48.6

The angle of $\pi^+\pi^-$ from K_S candidate is required to satisfy: $\theta(\pi^+\pi^-) < 175^{\circ}$

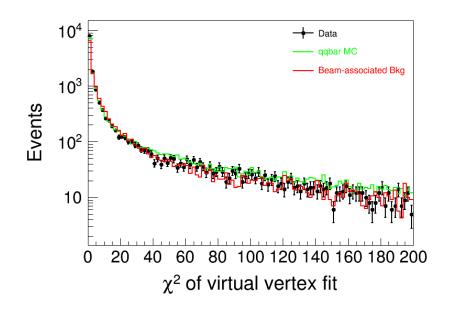


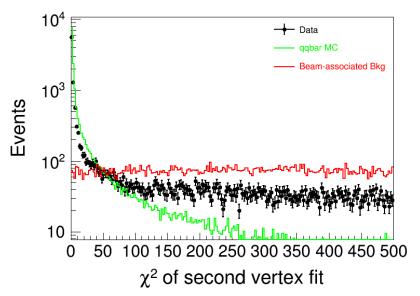
2.2324

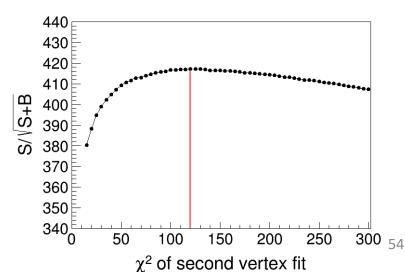
2.6444



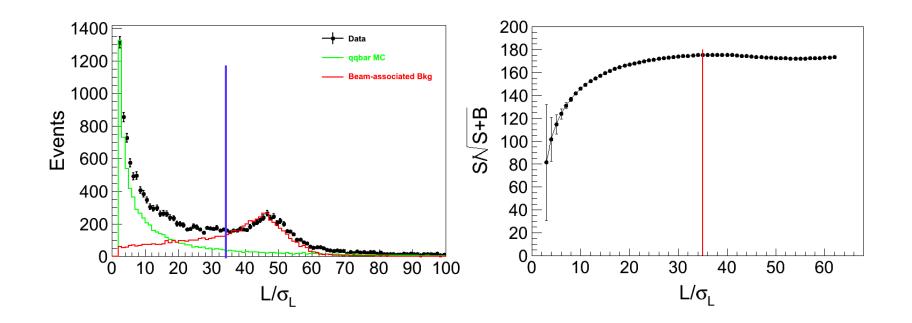
3.1 K_S^0 selection


To reconstruct the K_S^0 , the common vertex fit is performed for π^+,π^- pairs by looping all charged tracks. The charged particles are all assumed as pions when tagging the K_S^0 . The decay point of the K_S^0 is determined by the common vertex fit. It should be located in the reasonable region where could be calculated by the K_S^0 flight direction from IP considering the error of IP. The IP is determined by averaging the event vertices in each run, where event vertices are obtained from the vertex fit on the events with at least 3 charged tracks. The above constraint between the decay point and the IP is called second vertex fit. The χ^2 of second vertex fit should be less than 20 to veto the backgrounds. Fig. 1 shows the distribution of χ^2 of second vertex fit for the signal, and this cut is safe for signal selection. Actually, the second vertex fit is the decay length fit. To reconstruct K_S^0 , the K_S^0 decay point is found by the common vertex fit first. Then we require that the common vertex fit and the IP(interaction point) should be in the straight line along the K_S^0 flight direction in the decay length fit. The equations are shown blow:


$$\begin{aligned} x_p - x_d + \frac{p_x}{m} c\tau &= 0, \\ y_p - y_d + \frac{p_y}{m} c\tau &= 0, \\ z_p - z_d + \frac{p_z}{m} c\tau &= 0. \end{aligned}$$


where (x_p, y_p, z_p) is the IP, (x_d, y_d, z_d) is the K_S^0 decay point, (p_x, p_y, p_z) is the momentum of K_S^0 , m is the mass of K_S^0 , c is the speed of light and τ is the life time of K_S^0 . It is called

Possible cut to remove the beam-associated backgrounds: 3. Second vertex fit



Possible cut to remove the beam-associated backgrounds:

2. Ratio of decay length and decay length error

The ratio of decay length and decay length error from K_S candidate is required to satisfy:

$$L/\sigma_1 < 35$$

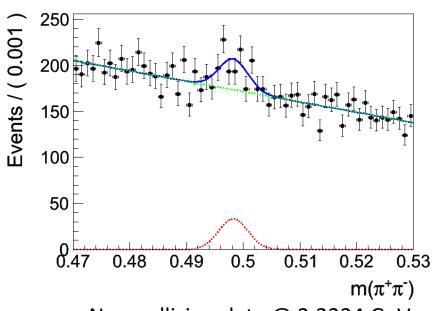

Possible cut to remove the beam-associated backgrounds: 2. Ratio of decay length and decay length error

Table 10: Extracted K_S^0 events and of K_S^0 efficiency varying with momenta

p(GeV)	Without L/a	σ_L cut	With L/σ_L cut	
p(GCV)	Exp.data	$\varepsilon(K_S^0)$	Exp.data	$\varepsilon(K_S^0)$
0.0-0.1	50.3±19.8	30.3	53.2±14.2	28.1
0.1-0.2	283.8±24.3	41.3	283.4±22.4	39.6
0.2-0.3	711.2±36.5	46.3	622.7±31.6	41.7
0.3-0.4	972.9±40.5	47.9	759.8±34.5	39.0
0.4-0.5	935.4±39.8	53.6	663.1±32.3	39.1
0.5-0.6	854.6±36.9	57.3	560.8±30.4	38.5
0.6-0.7	602.5±31.1	61.4	335.4±25.0	38.2
0.7-0.8	457.8±25.9	60.4	242.8±19.2	33.0
0.8-0.9	311.3±21.1	61.0	134.7±14.6	30.2
0.9-1.0	193.1±16.5	74.8	90.3±12.0	34.5
1.0-1.1	141.1±13.4	74.4	62.7±9.3	32.4
1.1-1.2	89.9±10.5	56.9	36.7±6.7	24.6
1.2-1.3	57.6±9.1	57.9	26.5±6.0	26.2
1.3-1.4	0.0±3.5	48.6	0.0±586.2	20.2

Efficiencies are largely decreased, and this cut is not appropriate.

Beam-associated Backgrounds

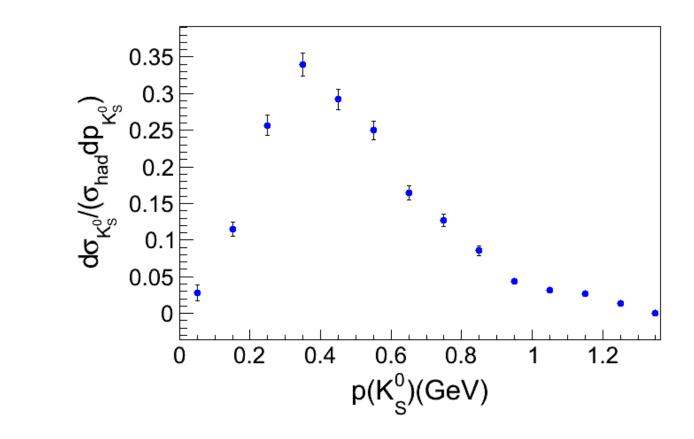
450 Events / (0.001 400 350 300 250 200 150 100 50 0.47 0.48 0.49 0.5 0.51 0.52 0.53 $m(\pi^+\pi^-)$

Non-collision data @ 2.2324 GeV: $(215 \pm 54)*0.452 = 97.2 \pm 24.4$

Non-collision data @ 2.6444: $(458\pm74)*0.442 = 202.4\pm32.7$

Total fitted Ks number at 2.8000 GeV:

5661.6


For Non-collision data @ 2.6444, the uncertainty is :

202.4/5661.6 = 3.6%

For Non-collision data @ 2.6444, the uncertainty is:

97.2/5661.6 = 1.7%

This result

Comparison with last result

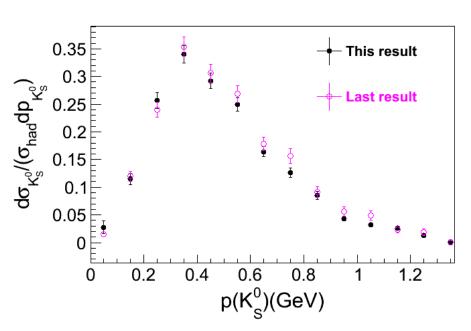


Table 12: Extracted K_S^0 events and of K_S^0 efficiency varying with momenta

	5 , , ,					
p(GeV)	This res	ult	Last result			
p(GeV)	Exp.data	$\varepsilon(K_S^0)$	Exp.data	$\varepsilon(K_S^0)$		
0.0-0.1	50.3±19.8	30.3	25.3±5.7	27.3		
0.1-0.2	283.8±24.3	41.3	243.4±17.7	34.0		
0.2-0.3	711.2±36.5	46.3	518.7±26.2	36.1		
0.3-0.4	972.9±40.5	47.9	708.0±30.6	33.5		
0.4-0.5	935.4±39.8	53.6	679.4±30.8	37.2		
0.5-0.6	854.6±36.9	57.3	599.0±28.3	37.4		
0.6-0.7	602.5±31.1	61.4	388.3±23.3	36.5		
0.7-0.8	457.8±25.9	60.4	311.8±20.0	33.3		
0.8-0.9	311.3±21.1	61.0	184.2±15.8	33.7		
0.9-1.0	193.1±16.5	74.8	95.8±11.4	28.8		
1.0-1.1	141.1±13.4	74.4	72.6±9.5	24.6		
1.1-1.2	89.9±10.5	56.9	27.9±5.7	20.3		
1.2-1.3	57.6±9.1	57.9	15.4±4.1	10.6		
1.3-1.4	0.0±3.5	48.6	0.3±2.5	4.2		

Efficiencies are improved

Summary and outlook

- For the inclusive K_S^0 and π^0 production @BESIII, we could provide
 - ✓ relative cross section of pion @ 2.800 GeV.
 - ✓ Preliminary systematic uncertainty.
- To do list

Model dependent uncertainty

Similar study for other energy points (2.396GeV, 2.6444GeV, 2.90GeV, 3.08GeV, 3.40GeV, 3.65GeV) taken for R value in 2012 and 2015.

Fragmentation Function:

$$\begin{split} \frac{1}{\sigma_{had}} \cdot \frac{d\sigma_{\pi^0}}{dp} &= \frac{1}{N_{had}/(L \cdot \varepsilon_{had} \cdot (1+\delta)_{had})} \cdot \frac{\sigma_{\pi^0}(p_i)}{\Delta p} \\ &= \frac{1}{N_{had}/(L \cdot \varepsilon_{had} \cdot (1+\delta)_{had})} \cdot \frac{N_{\pi^0}(p_i)/(L \cdot \varepsilon_{\pi^0}(p_i) \cdot (1+\delta)_{\pi^0}(p_i))}{\Delta p} \\ &= \frac{N_{\pi^0}(p_i)}{N_{had} \cdot \Delta p} \cdot \frac{\varepsilon_{had}}{\varepsilon_{\pi^0}(p_i)} \cdot \frac{(1+\delta)_{had}}{(1+\delta)_{\pi^0}(p_i)} \end{split}$$

$$\varepsilon_{had} = \frac{N_{had\ with\ ISR}^{MC\ det}}{N_{had\ with\ ISR}^{MC\ truth}}, \varepsilon_{\pi^0} = \frac{N_{\pi^0\ with\ ISR}^{MC\ det}(p_i)}{N_{\pi^0\ with\ ISR}^{MC\ truth}(p_i)}, 1 + \delta = \frac{N_{with\ ISR}^{MC\ truth}}{N_{without\ ISR}^{MC\ truth}}$$

Fragmentation Function:

$$\frac{1}{\sigma_{had}} \cdot \frac{d\sigma_{\pi^{0}}}{dp} = \frac{N_{\pi^{0}}(p_{i})}{N_{had} \cdot \Delta p} \cdot \frac{\varepsilon_{had}}{\varepsilon_{\pi^{0}}(p_{i})} \cdot \frac{(1+\delta)_{had}}{(1+\delta)_{\pi^{0}}(p_{i})}$$

$$= \frac{N_{\pi^{0}}(p_{i})}{N_{had} \cdot \Delta p} \cdot \frac{N_{had \ with \ ISR}^{MC \ det}}{N_{had \ with \ uth \ ISR}^{MC \ truth}} \cdot \frac{N_{\pi^{0} \ with \ uth \ ISR}^{MC \ truth}}{N_{\pi^{0} \ with \ ISR}^{MC \ det}} (p_{i})$$

$$= \frac{N_{\pi^{0}}(p_{i})}{N_{had} \cdot \Delta p} \cdot \frac{N_{had \ with \ ISR}^{MC \ det}}{N_{\pi^{0} \ with \ ISR}^{MC \ truth}} \cdot \frac{N_{had \ without \ ISR}^{MC \ truth}}{N_{had \ without \ ISR}^{MC \ truth}} (p_{i})$$

$$= \frac{N_{\pi^{0}}(p_{i})}{N_{had} \cdot \Delta p} \cdot C$$
Two methods

Typical example: OPAL collaboration in LEP

Typical example:
Belle collaboration

OPAL collaboration:

$$\frac{1}{\sigma_{had}} \cdot \frac{d\sigma_{\pi^{0}}}{dp} = \frac{N_{\pi^{0}}(p_{i})}{N_{had} \cdot \Delta p} \cdot \frac{\varepsilon_{had}}{\varepsilon_{\pi^{0}}(p_{i})} \cdot \frac{(1+\delta)_{had}}{(1+\delta)_{\pi^{0}}(p_{i})}$$

$$= \frac{N_{\pi^{0}}(p_{i})}{N_{had} \cdot \Delta p} \cdot \frac{N_{had \ with \ ISR}^{MC \ det}}{N_{had \ with \ USR}^{MC \ truth}} \cdot \frac{N_{\pi^{0} \ with \ USR}^{MC \ truth}}{N_{\pi^{0} \ with \ ISR}^{MC \ det}}$$

$$= \frac{N_{\pi^{0}}(p_{i})}{N_{had} \cdot \Delta p} \cdot \frac{N_{had \ with \ ISR}^{MC \ det}}{N_{\pi^{0} \ with \ ISR}^{MC \ truth}} \cdot \frac{N_{had \ without \ ISR}^{MC \ truth}}{N_{had \ with \ USR}^{MC \ truth}}$$

$$= \frac{N_{\pi^{0}}(p_{i})}{N_{had} \cdot \Delta p} \cdot C$$

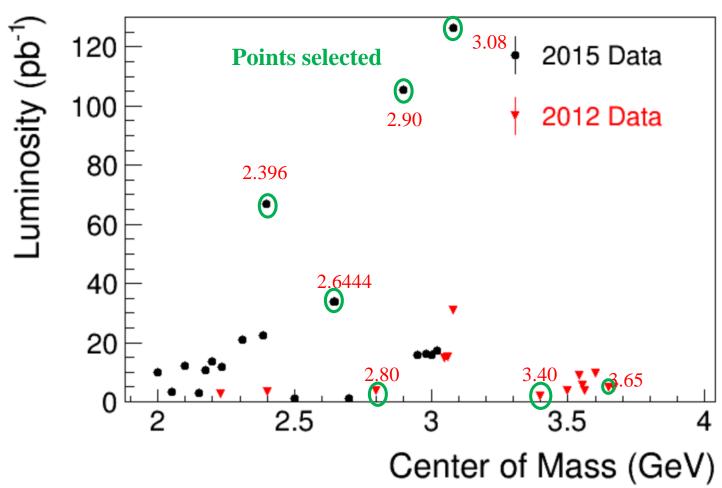
Two inclusive MC samples:

One with the ISR open and another with the ISR off

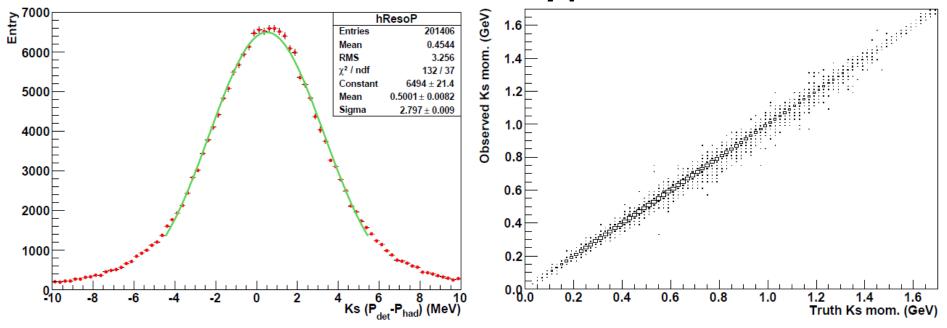
Belle collaboration:

$$\frac{1}{\sigma_{had}} \cdot \frac{d\sigma_{\pi^{0}}}{dp} = \frac{N_{\pi^{0}}(p_{i})}{N_{had} \cdot \Delta p} \cdot \frac{\varepsilon_{had}}{\varepsilon_{\pi^{0}}(p_{i})} \cdot \frac{(1+\delta)_{had}}{(1+\delta)_{\pi^{0}}(p_{i})}$$

$$= \frac{N_{\pi^{0}}(p_{i})}{N_{had} \cdot \Delta p} \cdot \frac{N_{had \ with \ ISR}^{MC \ det}}{N_{had \ with \ uth \ ISR}^{MC \ truth}} \cdot \frac{N_{\pi^{0} \ with \ uth \ ISR}^{MC \ truth}}{N_{\pi^{0} \ with \ ISR}^{MC \ det}} (p_{i})$$


$$= \frac{N_{\pi^{0}}(p_{i})}{N_{had} \cdot \Delta p} \cdot \frac{N_{had \ with \ ISR}^{MC \ det}}{N_{\pi^{0} \ with \ ISR}^{MC \ truth}} \cdot \frac{N_{had \ without \ ISR}^{MC \ truth}}{N_{had \ with \ uth \ ISR}^{MC \ truth}} (p_{i})$$

$$= \frac{N_{\pi^{0}}(p_{i})}{N_{had} \cdot \Delta p} \cdot C$$


Only one inclusive MC samples:

Total isr photon with energy $< 0.5\% \times \sqrt{s} / 2$: No ISR events

Luminosity of Data in 2012 and 2015

K_s: momentum resolution & binning

- Ks: momentum resolution **2.8MeV**
- Ks: momentum bin width 100MeV

Possible cut to remove the beam-associated backgrounds: 1. angle of $\pi^+\pi^-$

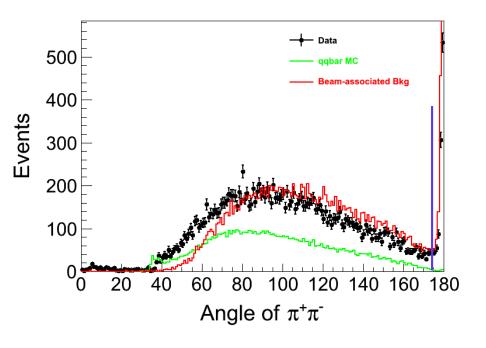
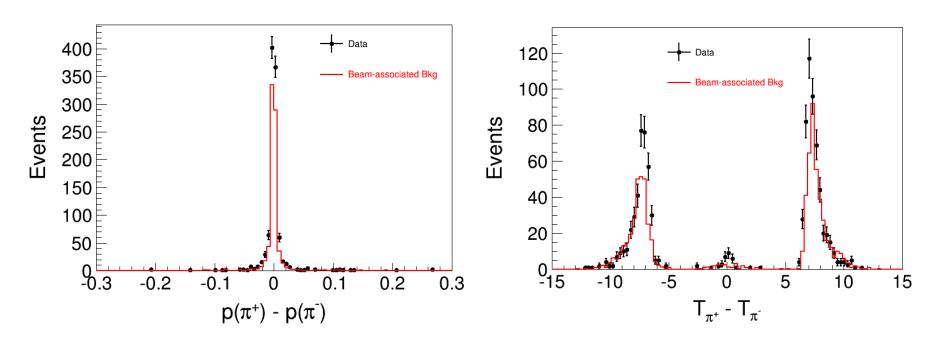



Table 11: Extracted K_S^0 events and of K_S^0 efficiency varying with momenta

(C. II)	With angle	e cut	Without angle cut (method C)	
p(GeV)	Exp.data	$\varepsilon(K_S^0)$	Exp.data	$\varepsilon(K_S^0)$
0.0-0.1	50.3±19.8	30.3	44.7±15.2	31.2
0.1-0.2	283.8±24.3	41.3	285.6±24.3	41.3
0.2-0.3	711.2±36.5	46.3	711.0±36.4	46.3
0.3-0.4	972.9±40.5	47.9	972.7±40.6	47.9
0.4-0.5	935.4±39.8	53.6	937.3±39.8	53.6
0.5-0.6	854.6±36.9	57.3	854.8±37.0	57.3
0.6-0.7	602.5±31.1	61.4	602.7±31.1	61.4
0.7-0.8	457.8±25.9	60.4	458.1±26.0	60.4
0.8-0.9	311.3±21.1	61.0	312.6±21.2	61.0
0.9-1.0	193.1±16.5	74.8	193.6±16.5	74.8
1.0-1.1	141.1±13.4	74.4	140.7±13.3	74.4
1.1-1.2	89.9±10.5	56.9	89.2±10.5	56.9
1.2-1.3	57.6±9.1	57.9	56.2±9.2	57.9
1.3-1.4	0.0±3.5	48.6	0.0±3.4	48.6

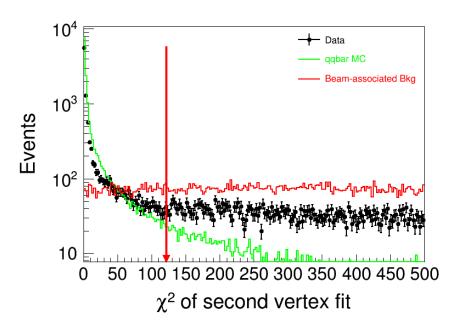
The angle of $\pi^+\pi^-$ from K_S candidate is required to satisfy: $\theta(\pi^+\pi^-) < 175^{\circ}$

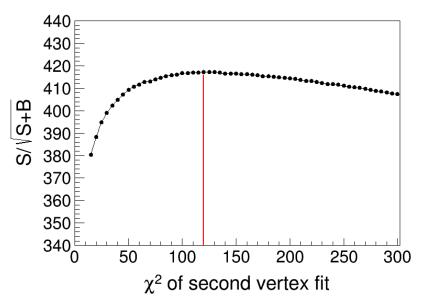
Possible cut to remove the beam-associated backgrounds:

The events with angle of $\pi^+\pi^-$ smaller than 175° come from cosmic rays.

Cosmic rays (at the sea level):

Due to the cascade shower, most components are muon (~75%) and proton(~2%). And the average momentum of muon is about 4 GeV.

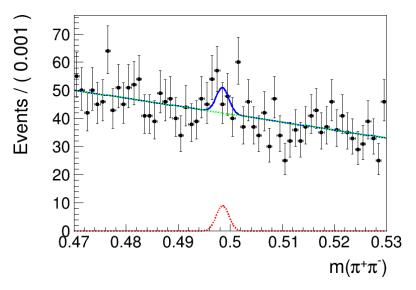

Remove the cosmic ray evets



Remove the cosmic rays: $|T(\pi^+) - T(\pi^-)| < 5$

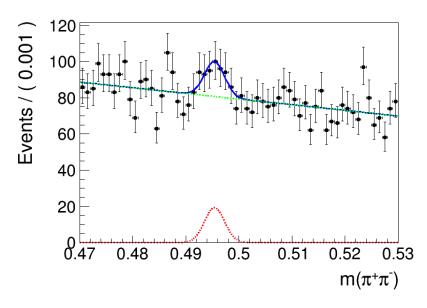
Possible cut to remove the beam-associated backgrounds: 3. Second vertex fit

After the cosmic rays cut applied:



S are the qqbar MC and (S+B) are experiment data

Remove the beam-associated backgrounds: χ^2 (second vertex fit) < 120


Possible cut to remove the beam-associated backgrounds: 3. Second vertex fit

After χ^2 (second vertex fit) < 120 cut applied:

Non-collider data at 2.2324 GeV Extracted Ks events: 27.5 ± 43.3

$$(27.5 \pm 43.3)*0.452/5582.9$$

= $(12.1 \pm 19.1)/5582.9$
= 0.2%

Non-collider data at 2.6444 GeV Extracted Ks events: 91.3 ± 30.2

$$(91.3 \pm 30.2)*0.442/5582.9$$

= $(40.4 \pm 13.3)/5582.9$
= 0.7%

Explanation for the cut of second vertex fit

3.1 K_S^0 selection BAM-69m Yan Liang

To reconstruct the K_S^0 , the common vertex fit is performed for π^+,π^- pairs by looping all charged tracks. The charged particles are all assumed as pions when tagging the K_S^0 . The decay point of the K_S^0 is determined by the common vertex fit. It should be located in the reasonable region where could be calculated by the K_S^0 flight direction from IP considering the error of IP. The IP is determined by averaging the event vertices in each run, where event vertices are obtained from the vertex fit on the events with at least 3 charged tracks. The above constraint between the decay point and the IP is called second vertex fit. The χ^2 of second vertex fit should be less than 20 to veto the backgrounds. Fig. 1 shows the distribution of χ^2 of second vertex fit for the signal, and this cut is safe for signal selection. Actually, the second vertex fit is the decay length fit. To reconstruct K_S^0 , the K_S^0 decay point is found by the common vertex fit first. Then we require that the common vertex fit and the IP(interaction point) should be in the straight line along the K_S^0 flight direction in the decay length fit. The equations are shown blow:

$$\begin{aligned} x_p - x_d + \frac{p_x}{m}c\tau &= 0, \\ y_p - y_d + \frac{p_y}{m}c\tau &= 0, \\ z_p - z_d + \frac{p_z}{m}c\tau &= 0. \end{aligned}$$

where (x_p, y_p, z_p) is the IP, (x_d, y_d, z_d) is the K_S^0 decay point, (p_x, p_y, p_z) is the momentum of K_S^0 , m is the mass of K_S^0 , c is the speed of light and τ is the life time of K_S^0 . It is called

Explanation for the cut of second vertex fit

$$x_p - x_d + \frac{p_x}{m}c\tau = 0,$$

$$y_p - y_d + \frac{p_y}{m}c\tau = 0,$$

$$z_p - z_d + \frac{p_z}{m}c\tau = 0.$$

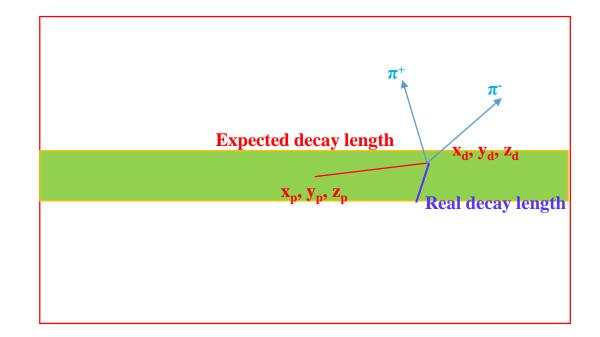
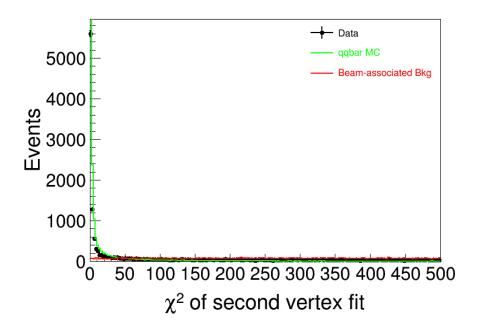
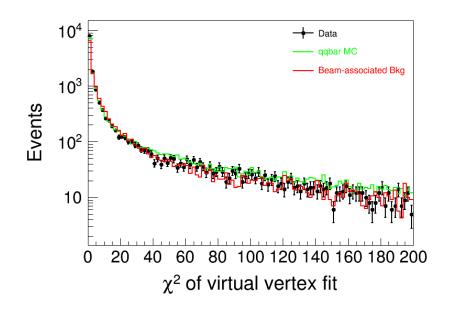
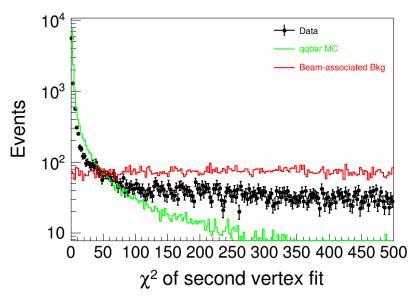
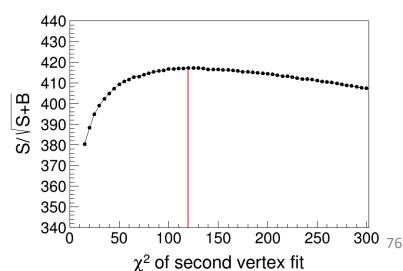



Table 13: Extracted K_S^0 events varying with momenta


Table 14: Extracted K_S^0 efficiency varying with momenta (%)


	3	3:	
p(GeV)	Before χ^2 (second vertex fit)	After χ^2 (second vertex fit)	Differences
0.0-0.1	50.3±19.8	26.1±8.8	-24.2
0.1-0.2	279.9±24.3	272.6±19.8	-7.3
0.2-0.3	702.6±36.2	668.4±30.3	-34.2
0.3-0.4	969.3±40.5	941.1±36.0	-28.2
0.4-0.5	934.7±39.8	939.3±35.7	4.6
0.5-0.6	853.8±36.9	861.1±34.3	7.2
0.6-0.7	601.4±31.0	609.8±29.1	8.4
0.7-0.8	456.5±25.9	463.0±24.5	6.5
0.8-0.9	310.6±21.1	319.3±20.5	8.7
0.9-1.0	193.5±16.5	191.1±15.9	-2.5
1.0-1.1	140.8±13.4	141.9±13.2	1.1
1.1-1.2	90.5±10.5	90.9±10.5	0.4
1.2-1.3	58.3±9.1	58.4±9.1	0.0
Total events	5642.3	5582.9	-59.4
Beam at 2.2324	97.2 ± 24.4	12.1±19.1	-85.1
Beam at 2.6444	202.4± 32.7	40.4±13.3	-162.0


tote 11: Extracted My emicrency varying with mementa (
p(GeV)	ε before χ^2 cut	ε after χ^2 cut	Differences			
0.0-0.1	30.9	30.7	-0.1			
0.1-0.2	41.1	41.0	-0.2			
0.2-0.3	46.0	45.9	-0.1			
0.3-0.4	47.5	47.7	0.2			
0.4-0.5	53.0	53.0	-0.0			
0.5-0.6	56.9	57.1	0.2			
0.6-0.7	61.1	60.7	-0.4			
0.7-0.8	59.8	59.8	-0.0			
0.8-0.9	60.7	60.4	-0.4			
0.9-1.0	74.6	74.5	-0.1			
1.0-1.1	73.9	74.4	0.4			
1.1-1.2	56.7	57.1	0.4			
1.2-1.3	57.6	57.6	-0.0			

Possible cut to remove the beam-associated backgrounds: 3. Second vertex fit

