Study of the Electromagnetic Dalitz decay of $J/\psi \rightarrow e^+e^-\pi^0$

Vindhyawasini Prasad

Email: vindy@ustc.edu.cn

Department of Modern Physics University of Science & Technology of China Hefei City, Anhui Province, 23006, China

Motivation

➤ The study of Electromagnetic Dalitz decays of V→Pe+eis important to reveal the structure of hadrons and the transition form factor (TFF), $|F_{VP}(m_{l+l-}^2)|^2$, at the transition vertex.

$$\rightarrow q^2 = m_{e^+e^-}$$
 dependent decay rate:

Vector meson dominance model (VMD): $|F_{VP}(m_{l+l-}^2)|^2$ is mainly governed by the coupling of the γ^* to the V meson via an intermediate vector (V') meson in the timelike region

$$F_{VP}(q^2) = N \sum_{V'} A_{V'} \frac{m_{V'}^2}{m_{V'}^2 - q^2 - i\Gamma_{V'}m_{V'}}$$
[JETP Lett. **29**, 398 (1979)]

simple pole approximation:

$$F_{VP}(q^2) = \frac{1}{1 - q^2 / \Lambda^2}$$

where Λ is an effective pole mass of the virtual vector meson and its inverse square value (Λ^{-2}) reflects the slope of the $|F_{VP}(m_{l+l-}^2)|^2$ at $m_{l+l-} = 0$.

Motivation

 $J/\psi \rightarrow Pe^+e^-$ (225M J/ψ data) [Phys. Rev. D 89 092008 (2014)] Experimental result agrees well with theoretical predication for η and η' .

Mode	Branching fraction	Combined result	Theoretical prediction
$\overline{J/\psi \to \eta' e^+ e^- (\eta' \to \gamma \pi^+ \pi^-)}$	$(6.01 \pm 0.20 \pm 0.34) \times 10^{-5}$		
$J/\psi \to \eta' e^+ e^- (\eta' \to \pi^+ \pi^- \eta)$	$(5.51 \pm 0.29 \pm 0.32) \times 10^{-5}$	$(5.81 \pm 0.16 \pm 0.31) \times 10^{-5}$	$(5.66 \pm 0.16) \times 10^{-5}$
$J/\psi \rightarrow \eta e^+ e^- (\eta \rightarrow \pi^+ \pi^- \pi^0)$	$(1.12 \pm 0.13 \pm 0.06) \times 10^{-5}$		
$J/\psi \to \eta e^+ e^- (\eta \to \gamma \gamma)$	$(1.17 \pm 0.08 \pm 0.06) \times 10^{-5}$	$(1.16 \pm 0.07 \pm 0.06) \times 10^{-5}$	$(1.21 \pm 0.04) \times 10^{-5}$
$J/\psi ightarrow \pi^0 e^+ e^- (\pi^0 ightarrow \gamma \gamma)$	$(7.56 \pm 1.32 \pm 0.50) \times 10^{-7}$	$(7.56 \pm 1.32 \pm 0.50) \times 10^{-7}$	$(3.89^{+0.37}_{-0.33}) \times 10^{-7}$

- ► Large discrepancy between experimental and theoretical results in $J/\psi \rightarrow e^+e^-\pi^0$ decay.
- New models, based on effective Lagrangian and dispersion theories, update the branching fraction of $J/\psi \rightarrow e^+e^-\eta(')\pi^0$ decays once again while taking into account to the contributions of light vector mesons and $\pi\pi$ intermediate states. [arXiv:1412.5385 [hep-ph] (2015)]

	Exp. data	this work	VMD prediction [13]
$\psi \to \pi^0 e^+ e^-$	0.0756 ± 0.0141	0.1191 ± 0.0138	$0.0389^{+0.0037}_{-0.0033}$
$\psi \to \eta e^+ e^-$	1.16 ± 0.09	1.16 ± 0.08	1.21 ± 0.04
$\psi \to \eta^{'} e^+ e^-$	5.81 ± 0.35	5.76 ± 0.16	5.66 ± 0.16

[arXiv:1411.1159 [hep-ph] (2014)]

Motivation

 $J/\psi \rightarrow e^+e^-\pi^0$ in the full $m_{e^+e^-}$ range using 1.31 billion J/ψ events collected by the BESIII detector.

	Exp. data	this work	VMD prediction [13]
$\psi \to \pi^0 e^+ e^-$	0.0756 ± 0.0141	0.1191 ± 0.0138	$0.0389^{+0.0037}_{-0.0033}$
$\psi \to \eta e^+ e^-$	1.16 ± 0.09	1.16 ± 0.08	1.21 ± 0.04
$\psi \to \eta^{'} e^+ e^-$	5.81 ± 0.35	5.76 ± 0.16	5.66 ± 0.16
	l.	 [arXiv:1411.1	159 [hep-ph] (2014)]

Data-sets

- ➤ We use 1310.6 million J/psi data-set collected by BEESIII experiment during 2009-2012.
- Also use 1225 million events of inclusive J/ψ Monte Carlo (MC) sample for background study. \geq
- Generate the signal MC for $J/\psi \rightarrow e^+e^-\pi^0$ using the formula of Equation *** shown in slide no 1 with \geq TFF=1 GeV/ c^2 to optimize the event selection criteria.
- Generate the exclusive MC events for the following decay processes to study the backgrounds:

0	$e^+e^- \rightarrow \gamma \mu^+ \mu^-$	(Phok
0	$e^+e- \rightarrow \gamma \pi + \pi -$	(Phok
0	$e + e^{-} \rightarrow \gamma \pi^{+} \pi^{-} \pi^{0}$	(Phok
0	$e^+e^- \rightarrow \gamma e^+e^-$	(Baba
0	$J/\psi \longrightarrow \gamma \pi^+ \pi^- \pi^0$	(EvtGe
0	$J/\psi \rightarrow V\pi^0, V(=\rho,\omega) \rightarrow e^+e^-$	(EvtGe
0	$J/\psi \rightarrow V \pi^0 \pi^0, \omega \rightarrow e^+e^-$	(EvtGe

(hara) (hara) hara) yaga) en) en) en)

10 million 5 million 20 million 11 million 74.1 million 120000 for each V decays 120000

Use BOSS V 664 to produce the ntuples. \succ

Event reconstruction and selection

- Select the events of interests with exactly two charged tracks and at least two photons.

 Good charged tracks
 Good photons

 $|V_r| < 1.0 \text{ cm}, |V_z| < 10 \text{ cm}$ Barrel region $(\cos\theta_{\gamma} < 0.8)$: $E_{\gamma} > 25 \text{ MeV}$

 and $|\cos\theta| \le 0.93$ End-cap region $(0.86 < \cos\theta_{\gamma} < 0.92)$: $E_{\gamma} > 50 \text{ MeV}$

 EMC timing: $[0,14] \times (50) \text{ ns}, \theta_{\gamma,x} \pm > 10 \text{ degrees.}$
- > Perform a 4C kinematic fit with two charged tracks and at least two good photon candidates.
- > The χ^2 from 4C kinematic fit is required to be less than 100.

Particle identification

- The two charged tracks are required to be identified as electrons using the PID based on dE/dx, TOF and EMC
 - ▶ prob of e^- > prob of π^-
 - $\blacktriangleright \text{ Prob of } e^{-} > \text{prob of } K^{-}$
- \blacktriangleright E/p > 0.8 if e[±] momentums are larger than 0.25 GeV/c.

Veto of gamma conversion events

Use a photon conversion finder package to veto the gamma conversion events

 $\delta_{xy} = \sqrt{R_x^2 + R_y^2}$ The distance from the conversion vertex point to the origin in the x - y plane

[Chin. Phys. C 36, 742 (2012)]

Veto of radiative Bhabha events

Cosine of photon helicity angle

Signal MC • $|\cos \theta_{heli}| < 0.9$ 2000 e⁺e⁻→γe⁺e⁻ MC • The momentum of both the *e* tracks is required to be 1.45 Gev/c Entries/0.01 • The energy of the low energetic photon used **O**heli for $\pi^0 \rightarrow \gamma \gamma$ reconstruction is required to be larger 1000 J/ψ than 0.14 GeV 0 0.5 $\cos\theta_{\text{heli}}$ Signal MC Signal MC e⁺e⁻→γe⁺e⁻ MC e⁺e⁻→γe⁺e⁻ MC 1000 Entries/0.016 Entries/0.016 50 500 0 0 0.5 1.5 0.5 'n E_γ (GeV) e⁻ momentum (GeV/c)

Remaining sources of backgrounds

Remaining backgrounds in the inclusive J/\psi MC sample:

No.	decay chain	final states	iTopo	nEvt	nTot
0	$J/\psi \rightarrow e^-e^+$	$J/\psi \rightarrow e^+e^-$	0	69	69
1	$J/\psi \rightarrow \pi^0 \rho^0, \ \rho^0 \rightarrow \pi^- \pi^+$	$J/\psi \rightarrow \pi^+ \pi^0 \pi^-$	2	9	78
2	$J/\psi \rightarrow \pi^{-}\pi^{0}\pi^{+}$	$J/\psi \rightarrow \pi^+ \pi^0 \pi^-$	1	4	82
3	$J/\psi \rightarrow \pi^- \rho^+, \ \rho^+ \rightarrow \pi^0 \pi^+$	$J/\psi \rightarrow \pi^+ \pi^0 \pi^-$	3	2	84
4	$J/\psi \rightarrow \gamma f_4(2050), f_4(2050) \rightarrow \pi^0 \pi^0$	$J/\psi \rightarrow \gamma \pi^0 \pi^0$	4	1	85
5	$J/\psi \rightarrow \rho^- \pi^+, \ \rho^- \rightarrow \pi^- \pi^0$	$J/\psi \rightarrow \pi^+ \pi^0 \pi^-$	5	1	86

Exclusive MC study for the remaining sources of the backgrounds:

Decay channel	Generated	Survival	Expt Evt (PDG)	Norm. Evt
$J/\psi o \gamma \pi^0$	25.0M	1352	45201.58 ± 241.43	2.45 ± 0.013
$J/\psi \to \pi^+ \pi^- \pi^0$	74.0M	218	$27328176.42 \pm 145961.57$	80.51 ± 0.430
$J/\psi \to \omega \pi^0, \omega \to \pi^+ \pi^-$	5.0M	39	9023.48 ± 48.20	0.072 ± 0.00
$J/\psi \to \omega \pi^0, \omega \to e^+ e^-$	0.12M	32978	42.43 ± 0.25	11.66 ± 0.07
$J/\psi \to \rho \pi^0, \rho \to e^+ e^-$	0.12M	33099	342.34 ± 1.83	94.43 ± 0.51
$J/\psi \to \omega \pi^0 \pi^0, \omega \to e^+ e^-$	0.12M	19	316.81 ± 1.69	0.05 ± 0.00

Di-electron invariant mass distribution: Data vs. MC

Need to generate the signal MC while including the resonant and non-resonant contribution in $J/\psi \rightarrow e^+e^-\pi^0$

BESIII Light Hadron Group Meeting

Data vs. MC

Di-electron invariant mass dependent Signal efficiency

In order to study the $m_{e^+e^-}$ dependent TFF, we generate the signal MC using formula of Eq. *** with TFF = 1.

$$iciency = \frac{-Mg_{MC}}{N_{sigMC}^{MC-truth}}$$

Maximum likelihood fit: Di-electron invariant mass dependent signal yield

- > Perform the $m_{e^+e^-}$ dependent maximum likelihood fit to the $m_{\gamma\gamma}$ distribution.
- > The signal PDF is described by the signal MC convoluted with a Gaussian function.
- Non-peaking background PDF is described by a 1st order Chebyshev polynomial function.
- Peaking background PDF is described by the histogram of the exclusive MC sample of the peaking background contribution.
- The peaking background is dominated by $J/\psi \rightarrow \gamma \pi^0$ in the low-mass region, and by $J/\psi \rightarrow \pi^+ \pi^- \pi^0$ in the higher mass region.

Efficiency corrected signal yield

[Phys. Rev. D 89 092008 (2014)]

TFF vs. m_{e+e} data

TFF is the ratio of experimentally measured $m_{e^+e^-}$ dependent differential decay rate of $J/\psi \rightarrow e^+e^-\pi^0$ to its standard QED point-like prediction defined by the formula of Eq.*** mentioned in page 2.

TFF vs. m_{e+e-} data

(10)

(11)

(13)

Fit to ρ/ω peak of the TFF curve

$$F_{J/\psi\pi^{0}}(q^{2}) = \frac{BW_{\rho}^{GS}(q^{2}, m_{\rho}, \Gamma_{\rho}) \frac{1 + c_{\omega} BW_{\mu}^{SS}(q^{2}, m_{\omega}, \Gamma_{\omega})}{1 + c_{\omega}} + c_{\rho'} BW_{\rho'}^{GS}(q^{2}, m_{\rho'}, \Gamma_{\rho'}) + c_{\rho''} BW_{\rho''}^{GS}(q^{2}, m_{\rho''}, \Gamma_{\rho'''}) + ...}{1 + c_{\rho'} + c_{\rho''} + ...},$$
(6)

where, the amplitudes of the Breit-Wigner (BW) functions are complex: $c_{\omega} = |c_{\omega}|e^{i\phi_{\omega}}, c_{\rho'} = |c_{\rho'}|e^{i\phi_{\rho'}}$ and $c_{\rho''} = |c_{\rho''}|e^{i\phi_{\rho''}}$. The BW of the ω is defined as:

$$BW_{\omega}^{\text{KS}}(q^2, m, \Gamma) = \frac{m^2}{m^2 - q^2 - im\Gamma}$$
 (7)

The wide ρ , ρ' and ρ'' resonances are described by the Gounaris-Sakurai (GS) model [30], which takes into account the variation of their width with energy:

$$BW^{\rm GS}(q^2, m, \Gamma) = \frac{m^2(1 + d(m)\Gamma/m)}{m^2 - q^2 + f(q^2, m, \Gamma) - im\Gamma(q^2, m, \Gamma)},$$
(8)

with

$$\Gamma(q^2, m, \Gamma) = \Gamma \frac{q^2}{m^2} \left(\frac{\beta_e(q^2)}{\beta_e(m^2)} \right)^3 , \qquad (9)$$

where $\beta_{\pi}(q^2) = \sqrt{1 - 4m_e^2/q^2}$.

The auxiliary functions used in the GS model are:

$$d(m) = \frac{3}{\pi} \frac{m_e^2}{k^2(m^2)} \ln\left(\frac{m+2k(m^2)}{2m_e}\right) + \frac{m}{2\pi k(m^2)} - \frac{m_e^2 m}{\pi k^3(m^2)} \,,$$

$$f(q^2,m,\Gamma) = \frac{\Gamma m^2}{k^3(m^2)} \left[k^2(q^2)(h(q^2) - h(m^2)) + (m^2 - q^2)k^2(m^2)h'(m^2) \right] \,,$$

where

$$k(q^2) = \frac{1}{2} \sqrt{q^2} \beta_{\pi}(q^2) , \qquad (12)$$

$$h(q^2) = \frac{2}{\pi} \frac{k(q^2)}{\sqrt{q^2}} \ln\left(\frac{\sqrt{q^2 + 2k(q^2)}}{2m_e}\right)$$

and $h'(q^2)$ is the derivative of $h(q^2)$.

Ignore the excited states of the ρ resonances (such as $\rho^{'},\,\rho^{'\,'}$ etc.) from the fit.

Mass and widths of ρ and ω resonances are fixed to their PDG values.

The value of the phase ϕ_{ω} of the $\rho - \omega$ interference is fixed to be 0.182 rad [Phys. Lett. B **648**, 28 (2007)]

Measured c_{ω} value is consistent with the Benedikt results with the statistical uncertainty.

[Phys. Lett. B 753, 629 (2016)]

BESIII Light Hadron Group Meeting

11/16/2017

TFF vs. m_{e+e-} data

We then perform the fit to TFF vs. $m_{e^+e^-}$ data in the full $m_{e^+e^-}$ range using the following formula:

The Λ value is observed to be $\Lambda = 0.271 \pm 0.022 \text{ GeV}/c^2$, which seems not to be correct due to its value is lower than $m_{J/\psi} - m_{\pi^0}$ threshold, that might be due to the contributions of massive ρ resonances in the high mass region.

Generate the signal MC for $J/\psi \rightarrow e^+e^-\pi^0$ using the TFF function of Eq. **** with $\Lambda = 3.686 \text{ GeV/c}^2$.

11/16/2017

BESIII Light Hadron Group Meeting

Data vs. MC: di-electron invariant mass spectrum

Systematic uncertainty due to the TFF is evaluated while generating the signal MCs with Λ =3.10, 3.686 and 4.0 GeV/c².

Background study: Two photon process of $e^+e^- \rightarrow e^+e^-\pi^0$ (J/ψ)

 $e^+e^- \rightarrow e^+e^-\pi^0 =$

 830.8 ± 0.8 pb @ 3.773 GeV

729.4±0.9 pb @ 3.0969 GeV

Many thanks to Dr. Christoph Redmer for providing these numbers.

The normalized two photon $e^+e^- \rightarrow e^+e^-\pi^0$ peaking background contribution in J/ ψ data is: \geq $(44 \pm 13) \times 0.14 = 6.16 \pm 1.82$ events

Projection plot (in the full di-electron invariant mass spectrum region)

 N_{sig} (after subtracting the background from the two photon process) = 282.64 \pm 26.22 events

11/16/2017

BESIII Light Hadron Group Meeting

Systematic uncertainty

Source	Uncertainty (for EM Dalitz decay)	uncertainty (for TFF)	
Additive systematic uncertainties (events)			
Fixed PDFs	0-4.7		
Fit Bias	1.78	1.78	
Background modelling	15.00		
Total	15.29	1.78 - 5.03	
Multiplicative sys	stematic uncertainties (%)		
$\cos \theta_{\gamma}^{hel}$	1.81	1.81	
Charged tracks	2.40	2.40	
Photon detection efficiency	2.00	2.00	
χ^2_{4C}	0.96	0.96	
e ⁻ PID	1.20	1.20	
J/ψ counting	0.50	0.50	
π^0 reconstruction	1.00	1.00	
Form factor	2.06		
Veto of gamma conversion	1.00	1.00	
$P_{e^{\pm}}$ and E_{γ_2}	3.88	3.88	
Total	6.08	5.72	

Most of the systematic numbers are taken from BAM-0266 (recently released for the CWR).

11/16/2017

Branching fraction

$$\mathcal{B}(J/\psi \to e^+ e^- \pi^0) = \frac{N_{sig}}{eff \cdot \mathcal{B}(\pi^0 \to \gamma\gamma) \cdot N_{J/\psi}}$$

Where,

$$eff = 28.86\%$$

 $B(\pi \rightarrow \gamma \gamma) = 0.98823$

 $NJ/\psi = 1310.6 \times 10^{6}$ $N_{sig} = 282.64 \pm 26.22$ events

 $B(J/\psi \rightarrow e^+e^-\pi^0) = (7.56 \pm 0.70(stat) \pm 0.62(syst)) \times 10^{-7}$

The accuracy of the measured branching fraction is improved by a factor of 2 over the previous **BESIII measurement**.

[Phys. Rev. D 89 092008 (2014)]

The branching fraction of $J/\psi \rightarrow e^+e^-\pi^0$ for $m_{e^+e^-} < 0.4 \text{ GeV/c}^2$

Generate 2000 Signal MC events in the same way as produced by previous BESIII measurement.

The peaking background is dominated by $J/\psi \rightarrow \pi^+\pi^-\pi^0$ decay.

This peaking background in previous BESIII measurement seems to be not properly evaluated due to generating the MC sample of $J/\psi \rightarrow \pi^+\pi^-\pi^0$ using the helicity amplitude model only.

[Phys. Rev. D 89 092008 (2014)]

The branching fraction of $J/\psi \rightarrow e^+e^-\pi^0$ for $m_{e^+e^-} < 0.4 \text{ GeV/c}^2$

2009 vs. 2012 J/y data

11/16/2017

BESIII Light Hadron Group Meeting

Summary and conclusion

- ► We perform the study of the electromagnetic Dalitz decay of $J/\psi \rightarrow e^+e^-\pi^0$ using 1.31 billion J/ψ events collected by the BESIII experiment.
- > The di-electron dependent TFF curve is studied for the first time.
- ➢ No any significant deviation between experimental and theoretical prediction is seen for $m_{e^+e^-} < 0.4 \text{ GeV/c}^2$ as seen by previous BESIII measurement based on 2009 J/ψ data-set. [Phys. Rev. D 89 092008 (2014)]
- The branching fraction of $J/\psi \rightarrow e^+e^-\pi^0$ in $m_{e^+e^-}$ range is measured to be $B(J/\psi \rightarrow e^+e^-\pi^0) = (7.56 \pm 0.70(\text{stat}) \pm 0.62(\text{syst})) \times 10^{-7}$, which precision is improved by a factor of 2 over the previous BESIII measurement.
- Future BESIII J/ ψ data will be utilized to measure the branching fraction and TFF of J/ $\psi \rightarrow e^+e^-\pi^0$ precisely.
- > Memo is ready for a review.

Memo version 1.0

BESIII Analysis Memo

BAM-XXX

November 15, 2017

Study of the electromagnetic Dalitz decay of $J/\psi \rightarrow e^+e^-\pi^0$

Vindhyawasini Prasada,b, Haiping Penga,b, and Haibo Lic

^aDepartment of Modern Physics, University of Science & Technology of China, Hefei 230026, China ^bState Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, China ^cExperimental Physics Division, Institute of High Energy Physics, Beijing, 100049, China

Internal Referee Committee

XX (Chair)e, XXf, and XXg

^eXX ^fXX ^gXX

HN:http://hnbes3.ihep.ac.cn/HyperNews/get/paperXXX.html

Abstract

We study the electromagnetic Dalitz decay of $J/\psi \rightarrow e^+e^-\pi^0$ using a data sample of $(1310.6 \pm 7.0) \times 10^6 J/\psi$ events collected by the BESIII detector. The transition form factor of this decay process is studied as a function of di-electron mass spectrum. A significant peaking structure corresponding to the ρ/ω mass position is observed. While taking into account of the contribution of this resonant structure, the branching fraction $\mathcal{B}(J/\psi \rightarrow e^+e^-\pi^0)$ is observed to be $\mathcal{B}(J/\psi \rightarrow e^+e^-\pi^0) = (7.56 \pm 0.70(stat) \pm 0.62(syst)) \times 10^{-7}$, where the first uncertainty is the statistical and the second the systematic uncertainty. The precision of this new measurement is improved by a factor of two over the previous BESIII measurement.

11/16/2017

Back slide

Decay file of $J/\psi \rightarrow e^+e^-\pi^0$

D	ecay Options:	
Decay J	/psi	
0.18358	pi+ pi- pi0	OMEGA_DALITZ;
0.27214	rho0 pi0	HELAMP 1.0 0.0 0.0 0.0 -1.0 0.0;
0.27214	rho+ pi-	HELAMP 1.0 0.0 0.0 0.0 -1.0 0.0;
0.27214	rho- pi+	HELAMP 1.0 0.0 0.0 0.0 -1.0 0.0;
Enddeca	ay	
Decay r	ho0	
1.000	pi+ pi-	VSS;
Enddeca	ay	
Decay r	ho+	
1.000	pi+ pi0	VSS;
Enddeca	ay	
Decay r	ho-	
1.000	pi- pi0	VSS;
Enddeca	ay	
Decay p	oi0	
1.000	gamma gamma	PHSP;
Enddeca	ay	
End		