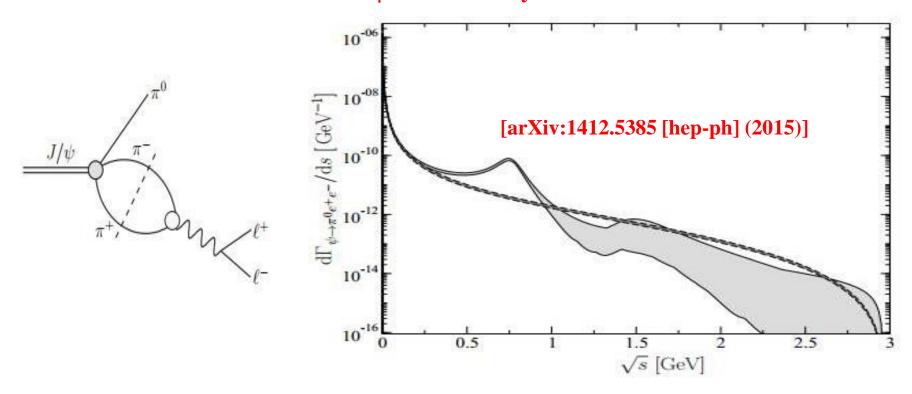


Vindhyawasini Prasad

Email: vindy@ihep.ac.cn


Department of Modern Physics University of Science & Technology of China Hefei City, Anhui Province, 23006, China

Motivation

 $J/\psi \rightarrow e^+e^-\pi^0$ decay

	Exp. data	this work	VMD prediction [13]	
$\psi \to \pi^0 e^+ e^-$	0.0756 ± 0.0141	0.1191 ± 0.0138	$0.0389^{+0.0037}_{-0.0033}$	
$\psi \to \eta e^+ e^-$	1.16 ± 0.09	1.16 ± 0.08	1.21 ± 0.04	
$\psi \to \eta^{'} e^+ e^-$	5.81 ± 0.35	5.76 ± 0.16	5.66 ± 0.16	
		I.	[arXiv:1411.1159 [hep-ph] (2014	4)]

Event reconstruction and selection

- Select the events of interests with exactly two charged tracks and at least two photons.
- q Good charged tracks $|V_r| < 1.0 \text{ cm}, |V_z| < 10 \text{ cm}$ and $|cos\theta| \le 0.93$

Good photons

Barrel region ($\cos\theta_{\gamma} < 0.8$): $E_{\gamma} > 25 \text{ MeV}$ End-cap region ($0.86 < \cos\theta_{\gamma} < 0.92$): $E_{\gamma} > 50 \text{ MeV}$ EMC timing: [0,14]×(50) ns, $\theta_{\gamma,x} \pm > 10$ degrees.

Cos^{0^{heli}}

- > Perform a 4C kinematic fit with two charged tracks and at least two good photon candidates.
- > The χ^2 from 4C kinematic fit is required to be less than 100.

The two charged tracks are required to be identified as electrons using the PID based on dE/dx, TOF and EMC
 prob of e⁻ > prob of π⁻
 Prob of e⁻ > prob of K⁻
 δ_{xy} < 2 cm
 Cosθ_{heli} < 0.8

Event selection

 \blacktriangleright Improve further the purity of electrons while requiring the E/p distributions of both the tracks to be greater than 0.8c for e^{\pm} momentum to be greater than 0.25 GeV/c.

Ep_fit_P {ep_EOP < 0}

7000 6000 5000

4000 3000

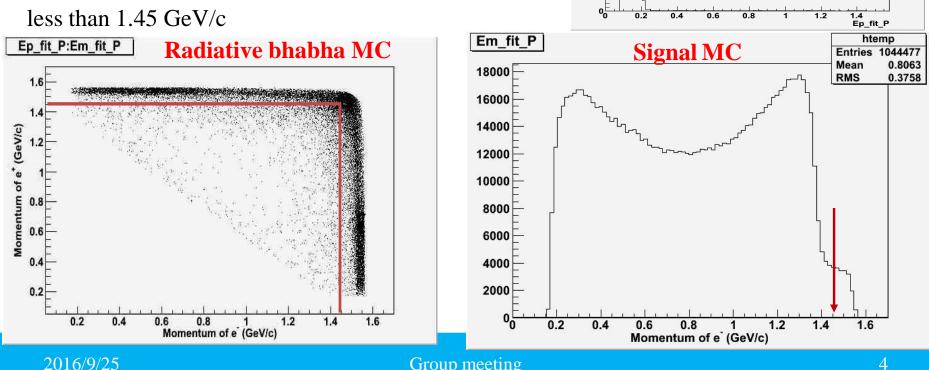
2000

1000

Entries

Mean

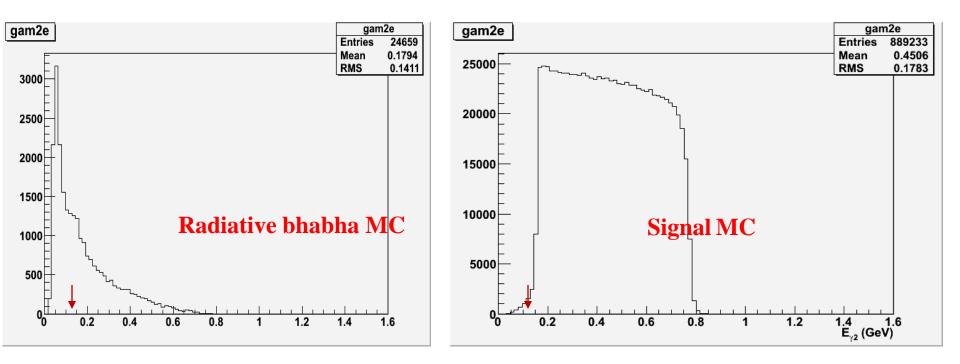
PMS

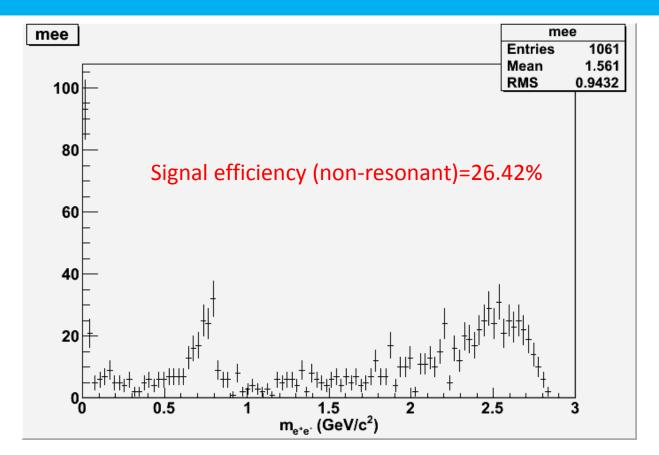

41162

0.1807

0.1698

No m_{ee} cut. \succ


Radiative bhabha related events are while requiring suppressed the momentum of both the tracks to be less than 1.45 GeV/c


Group meeting

Event selection

Energy of second photon used for $\pi^0 \rightarrow \gamma \gamma$ is required to be larger than 0.14 GeV.

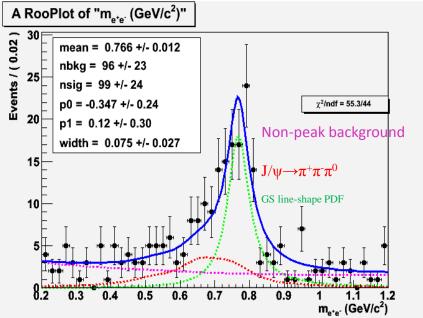
Di-electron invariant mass distribution

Peaking backgrounds:

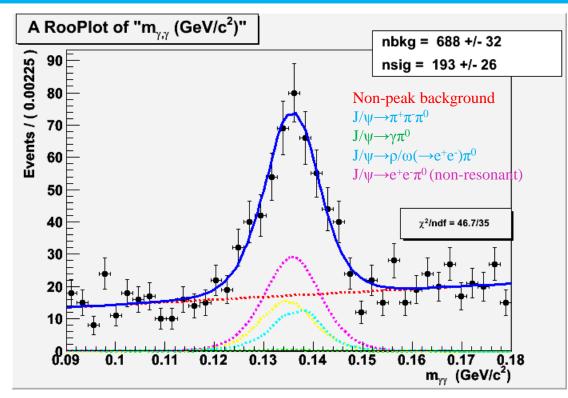
- ► J/ $\psi \rightarrow \pi^+ \pi^- \pi^0$ (78.29 events determined using exclusive MC sample)
- > $J/\psi \rightarrow \gamma \pi^0$ (2.37 event determined using exclusive MC sample)

ML fit to di-electron invariant mass distribution

Gounaris-Sakurai lineshape PDF


$$GS(m; m_0, \Gamma_0, J, R) = \frac{(1 + d \cdot \Gamma_0 / m_0)^2}{(m^2 - m_0^2 - f(m^2))^2 + m_0^2 \Gamma^2(m)},$$

where


$$\begin{split} f(s) &= \Gamma_0 \frac{m_0^2}{k^3(m_0)} \left[k^2(m) [h(s) - h(m_0^2)] + (m_0^2 - s) k^2(m_0) dh/ds |_{s=m_0^2} \right], \\ h(s) &= \frac{2k(m)}{\pi \sqrt{(s)}} \ln \left(\frac{\sqrt{s} + 2k(m)}{2m_\pi} \right), \\ dh/ds |_{s=m_0^2} &= h(m_0^2) \left[(8k^2(m_0))^{-1} - (2m_0^2)^{-1} \right] + (2\pi m_0^2)^{-1}, \end{split}$$

$$d = \frac{3m_{\pi}^2}{\pi k^2(m_0)} \ln\left(\frac{m_0 + 2k(m_0)}{2m_{\pi}}\right) + \frac{m_0}{2\pi k(m_0)} - \frac{m_{\pi}^2 m_0}{\pi k^3(m_0)},$$

$$\Gamma(m) = \Gamma_0 \frac{m_0}{m} \left(\frac{k(m)}{k(m_0)}\right)^{2J+1},$$

ML fit to di-photon invariant mass distribution

 $Br(J/\psi \rightarrow e^+e^-\pi^0)$ (non-resonant) = (5.64 ± 0.76)×10^{-7}

To do list:

- Will generate the MC sample for resonant + non-resonant contributions of $J/\psi \rightarrow e^+e^-\pi^0$ to compute the final branching fraction number.
- ➢ Will finalize the systematic uncertainties.
- > Will produce a memo for a review.