Overview on CERN Test Beam Facilities and Plans for Tests for Non-Collider Experiments

Edda Gschwendtner, CERN

Overview

- East Area Test Beam Facility
- North Area Test Beam Facility
- Test-Plans for Non-Collider Experiments
- Summary

Test Beam Facilities at CERN

PS East Area

5 beam lines

total length 300m

300 scientists / year performing experiments and tests

13 Mai 2009

The East Experimental Areas at the PS

East Area Beam Characteristics

- Momentum range
 - Secondary beam: 1GeV/c 15 GeV/c
- Particle type and intensity
 - electrons, hadrons, muons
 - max. 1-2*10⁶ particles per spill
 typically 10³ 10⁴ used
- Spill structure from PS
 - 400ms spill length
 - typically 1 spill every 33.6 s, more on request

SPS North Area

7 beam lines total length 5.8 km Three experimental halls : EHN1, EHN2, ECN3

~2000 scientists / year

13 Mai 2009

The North Experimental Areas at the SPS

- The SPS proton beam (400/450 GeV/c) slowly extracted to North Area
- Directed towards the three North Area primary targets T2, T4 and T6
- From the primary targets:
 - T2 → H2 and H4 beam lines
 - T4 → H6 and H8 beam lines

and P42/K12 beam line (NA62)

- T6 → M2 beam line (NA58/COMPASS)

North Area Test Beams

Up to 4 user areas per beam line

Possibility to take parasitic muons behind main user Some areas permanently occupied by LHC users (ATLAS, CMS, LHCb, TOTEM)

North Area Beam Characteristics

• Momentum range

- H2, H4, H8:
 - 10 400 GeV/c (secondary beam)
 - primary proton beam at 400 (450) GeV/c
- H6:
 - 5 205 GeV/c
- Particle type
 - electrons, hadrons, muons
 - \rightarrow secondary target \rightarrow tertiary beam
- Particle intensity
 - max. 2*10⁸ particles per spill
- Spill structure from SPS
 - 4.8s 9.6s spill length, debunched
 - 1 spill every 14s ~48s
 - spill length/repetition frequency depend on number of facilities which need SPS extraction (CNGS, LHC)

User Requests for SPS

• SPS Secondary Beams – Experiments and Tests

- Weekly PS/SPS user meetings
- Beam requests to SPS coordinator:
 - Request < 1week agreed and recommended by SPS coordinator
 - >1 week: discussed and recommended by SPSC
 - LHC related request often discussed and recommended by LHCC
 - Final approval by Research Board

E. Gschwendtner, CERN

13 Mai 2009

Plans for Tests for Non-Collider Experiments

- Production of High-Energy Secondary Beam of Ion Fragments for Experiments and Instrument Tests at CERN SPS
 - I. Efthymiopoulos et al.
- Bremsstrahlung Emission from Relativistic Heavy Ions
 - U. Uggerhoj et al.
- Test Beam Needs for Neutrino Detector R&D Projects
 - A. Blondel et al.
- Test Beam Exposure of a Liquid Argon TPC Detector at the CERN SPS North Area (ePiLAr)
 - A. Rubbia et al.
- Shock Tests of a Solid Target for High Power Proton Beams
 - J. Bennett, R. Edgecock et al.
- Activities for LHC experiments and LC R&D
- Irradiation facilities

→ See next talks

E. Gschwendtner, CERN

13 Mai 2009

Production of High-Energy Secondary Beam of Ion Fragments for Experiments and Instrument Tests at CERN SPS

EFTHYMIOPOULOS, Ilias (CERN), STROEBELE, Herbert (IKF University of Frankfurt); MAURY, Stephan (CERN); A.BRAVAR, Alessandro (University of Geneva); FODOR, Zoltan (KFKI Research Institute for Particle and Nuclear Physics Hungarian Academy of Sciences); GAZDZICKI, Marek (Institut fuer Kernphysik Johann-Wolfgang-Goethe Univ.); GUBER, Fedor (Institute for Nuclear Research (INR) Russian Academy of Sciences); IVASHKIN, Alesandr (Institute for Nuclear Research (INR) Russian Academy of Sciences); PLANETA, Roman Josef (Marian Smoluchowski Inst. Phys. Jagiellonian University); POPOV, Boris (Joint Inst. for Nuclear Research (JINR)); RYBCZYNSKI, Maciej (Uniwersytet Jana Kochanowskiego Instytut Fisyki); SEYBOTH, Peter (Werner Heisenberg-Institut Max-Planck-Institut fuer Physik); WLODARCZYK, Zbigniew (Uniwersytet Jana Kochanowskiego Instytut Fisyki)

- Ion beams can be extracted in the SPS North Area as in the past
 - Beam lines : H2, H4, H8
 - New path via LEIR; some work is required in SPS RF system for debunching
 - Start in 2011 with Pb⁸²⁺ as for LHC
 - Length of ion period to be defined
 - Maximum intensity : 10⁹ ions/spill
 - Variable ion beam energy possible : (10)20-158 GeV/u (as in the past)

Fragmented ion beams

Under study for NA61

 \rightarrow scan different species without having to change the ion source and re-tune the whole accelerator chain

- Species requested : $^{12}C^{6+},\,^{32}S^{16+},\,^{115}In^{49+}$, or others to optimize production and physics interest for the experiment
- Beam studies ongoing in collaboration with the NA61 and GSI colleagues
- Note: fragmentation beams have been used in the past for the AMS, NA49 and CREAM test setups but without particular attention to purity

I. Efthymiopoulos

Production of High-Energy Secondary Beam of Ion Fragments for Experiments and Instrument Tests at CERN SPS

 Beam line: double spectrometer with 0.04% resolution that helps to separate the ion fragments corresponding to a selected magnetic rigidity : Bp

H2 Beam Line for Fragmented Ion Beam

Bremsstrahlung Emission from Relativistic Heavy Ions

A.H. Sørensen, U.I. Uggerhøj, S.V. Pedersen, S.P. Møller, H. Knudsen;Aarhus UniversityP. Sona and S. Ballestrero, Florence UniversityC. Scheidenberger, GSI

→ Serious background in ALICE

Measurement of Bremsstrahlung of fully stripped Pb Ions on various targets

- Treating the collision partners as structure-less point-like particles is incorrect
- Finite size and compositeness of nuclei can not be neglected

U.I. Uggerhøj,

Bremsstrahlung Emission from Relativistic Heavy lons

Experimental challenge:

Background from bremsstrahlung due to high energy delta-electrons

Timescale:

- few weeks of test-beam
- Ready as soon as SPS is ready to deliver ions (2011)

16

Test Beam Needs for Neutrino Detector R&D Projects International scoping study of a future Neutrino Factory and super-beam facility

RAL-TR-2007-24

Detectors and flux instrumentation for future neutrino facilities

T. Abe^a, H. Aihara^a, C. Andreopoulos^b, A. Ankowski^{aj}, A. Badertscher^c, G. Battistoni^d,
A. Blondel^e, J. Bouchez^f, A. Bross^h, A. Buenoⁱ, L. Camilleri^g, J.E. Campagne^j, A. Cazes^k,
A. Cervera-Villanueva^l, G. De Lellis^m, F. Di Capua^m, M. Ellis^h, A. Ereditatoⁿ,
L.S. Esposito^o, C. Fukushima^p, E. Gschwendtner^g, J.J. Gomez-Cadenas^l, M. Iwasaki^a,
K. Kaneyuki^a, Y. Karadzhov^q, V. Kashikhin^h, Y. Kawai^r, M. Komatsu^s, E. Kozlovskaya^t,
Y. Kudenko^u, A. Kusaka^a, H. Kyushima^r, A. Longhin^v, A. Marchionni^c, A. Marotta^m,
C. McGrew^w, S. Menary^{h,x}, A. Meregaglia^c, M. Mezzeto^v, P. Migliozzi^m, N.K. Mondal^y,
C. Montanari^z, T. Nakadaira^{aa}, M. Nakamura^s, H. Nakumo^a, H. Nakayama^a, J. Nelson^{ab},
J. Nowak^{ak}, S. Ogawa^p, J. Peltoniemi^{ac}, A. Pla-Dalmau^h, S. Ragazzi^{ad}, A. Rubbia^c,
F. Sanchez^{ae}, J. Sarkamo^{ac}, O. Sato^s, M. Selvi^{af}, H. Shibuya^p, M. Shozawa^a, J. Sobczyk^{aj},
F.J.P. Soler^{ag}, P. Strolin^m, M. Suyama^r, M. Tanak^{aa}, F. Terranova^k, R. Tsenov^q,
Y. Uchida^{ah}, A. Weber^{ai,b}, A. Zlobin^h

E. Gschwendtner, CERN

13 Mai 2009

A. Blondel

17

Test Beam Needs for Neutrino Detector R&D Projects

Detector needs for future neutrino long baseline experiments

- very large scale
- increased resolution
- Increased ability to reduce backgrounds

Detector types and test-beam issues:

- Non-magnetic detectors: Water Cherenkov, Liquid Argon TPC
 - Energy range: 200 MeV/c a few GeV/c
 - Electron π^0 separation, muon-pion separation
 - Development of large scale electronics at low cost and test of performance
- Magnetic detectors: Magnetized iron detector (MIND), fine grained detector embedded in magnetic field (scintillators, emulsion, LAr)
 - Energy range: 200 MeV/c ~20 GeV/c
 - Pion muon separation
 - Charge identification of muons and electrons as function of momentum
 - Angular and energy resolution on hadronic showers
 - Development of large scale electronics at low cost and test of performance

Test Beam Needs for Neutrino Detector R&D Projects

Some test detectors existing or under construction

Totally active Scintillator (GVA-Trieste-FNAL)

MEMPHYNO (Paris): Prototype for MEMPHYS (Megaton Mass PHYSics)

> Liquid Argon R&D (Glacier Collab.)

ArDM ton-scale

INO-BABY-MIND (Imperial – GVA- Glasgow - Valencia-India) E.g. magnetized iron interleaved by active detector elements

19

Test Beam Needs for Neutrino Detector R&D Projects

Neutrino detector test beam

- beam: sub GeV 20 GeV/c
- Large magnet
- Possibly test beam area in H8

Timescale

- 2010/11

E. Gschwendtner, CERN

13 Mai 2009

Iron toroid for muon detection and hadron tail catching equipped with scintillator readout with SiPMs

A. Blondel

Test Beam Exposure of a Liquid Argon TPC Detector at the CERN SPS North Area (ePiLAr)

D.Autiero^a, A. Badertscher^b, G. Barker^c, Y. Declais^a, A. Ereditato^d, S.Gninenko^e, T. Hasegawa^f, S. Horikawa^b, J. Kisiel^g, T. Kobayashi^f, A.Marchionni^b, T. Maruyama^f, V. Matveev^e, A. Meregaglia^h, J.Marteau^a, K. Nishikawa^f, A. Rubbia^b, N. Spoonerⁱ, M. Tanaka^f, C.Touramanis^j, D. Wark^k, I, A. Zalewska^m, M. Zitoⁿ

(a) IPN Lyon (b) ETH Zurich (c) University of Warwick (d) Bern University (e) INR, Moscow
(f) KEK/IPNS (g) University of Silesia (Katowice) (h) IPHC Strasbourg (i) University of Sheffield (j)
University of Liverpool (k) Imperial College (I) RAL (m) IFJ-PAN, Krakow (n) CEA/SACLAY

The realization of the ultimate LAr TPC that will compete with the planned third generation water Cerenkov detectors offers great promise and many challenges.

The new concept « GLACIER », scalable to a single detector unit of mass 100 kton, was proposed in 2003: it relies on a cryogenic storage tank developed by the petrochemical industry (LNG technology) and on a novel method of operation called the LAr LEM-TPC

Test Beam Exposure of a Liquid Argon TPC Detector at the CERN SPS North Area (ePiLAr)

Based on ArDM-1t design

Test Beam Exposure of a Liquid Argon TPC Detector at the CERN SPS North Area (ePiLAr)

- Calorimetry: the 100% homogeneity and full sampling calorimetry with low energy particles (0.5-5 GeV/c e/mu/pi). To determine the ability to reconstruct neutrino events in the GeV-range.
- Hadronic secondary interactions: exclusive final state study of pion secondary interactions will be attempted.
- [+ purity tests in non-evacuated vessel, cold readout electronics, DAQ development, ...]
- Test beam requirements
 - 0.5-5 GeV/c e/mu/pi with well defined momenta
 - Possibility to reach lower momenta (200, 400 MeV/c)
 - Low intensity of particles during spill (< 1kHz)
 - Liquid Argon infrastructure
- Timescale
 - 2010
 - duration of the tests: 2 to 3 years

H8

Shock Tests of a Solid Target for High Power Proton Beams

J. R. J. Bennett1, R. Edgecock1, G. Skoro2, J. Back3, C. Booth2, S. Brooks1, R. Brownsword1, C. J. Densham1, S. Gray1 and A. J. McFarland1
1 Rutherford Appleton Laboratory, Chilton, Didcot, Oxon. OX11 0QX, UK
2 Department of Physics and Astronomy, University of Sheffield, Sheffield. S3 7RH, UK
3 Department of Physics, University of Warwick, Coventry. CV4 7AL, UK.

The Neutrino Factory Target

Proton	beam	Target (high z material such as tungsten)							
Energy	2-30 GeV	Dimensions	0 cm long (2 interaction engths), 1-3 cm diameter						
Current	2-0.03 mA	I							
Power	4 MW	Power Dissipatior	ח ~1 MW						
Pulse	<1000 ns 50 Hz	Power Density	~4-16 kW/cm ³ (average)						
		Energy Density	~300-1200 J/cm ³ /pulse						

Demonstrate viability of solid target:

- simulate thermal shock from a beam similar to neutrino factory conditions

Timescale:

- for life tests: $10^5 10^7$ pulses
- 6 12 months notice to prepare for the experiment

J. Bennett

Isolde, future HiRadMat

E. Gschwendtner, CERN

13 Mai 2009

Summary

- CERN has worldwide unique opportunity for detector and physics tests
 - PS and SPS beam-lines
 - Technical support and infrastructure provided by CERN
- Facilities are heavily used
 - Always fully booked
- Future requests
 - Interest in Heavy Ions
 - Needs additional preparation: e.g. radiation safety issues
 - Short-medium term (up to 2012)
 - R&D for Neutrino Detectors
 - Large objects
 - Looking for more permanent installation
 - Additional infrastructure (magnets, cryogenics)
 - High-Power targets
- \rightarrow Exciting new ideas for future experiments
- \rightarrow New technologies
- \rightarrow All experiments need test beams

Additional slides

2009 Test Beams

SPS

2009 SPS Fixed Target Programme

Version 3.0

Colour code: green = SPS-exp ; purple = LHC-exp ; dark blue = Outside exp ; yellow = not allocatable or Machine Development

	P1	P2	P3		P4	P5	P6			
	35	35	35		35	35	32			
	30 Apr	4 Jun	9 Jul		13 Aug	17 Sep	22 Oct			
T2 -H2	A Jun NA CMS CREAV *** CASTOR TF 3 7 7 3	CMS WCALO TR HCAL 4 10 11 10	CHE CMS NA61 HCAL 13 18		NA61 35	NA61 CREAV NA61 11 7 17	23 NOV NA61 NUCLEON 24 8			
T2 -H4	NA CMS CMS BCMECAL 3 7 6 4	sited RD51	CMS ECAL 9 14 6	canon CALO 6	CALO 9 7 14 5	Mac NAc UA9 LECAL 20 10	RD51 <mark>CMS</mark> LHCf ECAL 10 9 13			
T4 -H6	0 5 5 7 3	ATLAS RD42 ATLAS ATLAS BCM SUMMER LUCID 7 7 7 7 7 7	ATLAS EUDET	енн <mark>ет</mark> - 6 1	LCFI SILC 7148 ATLAS FF420 Carrier 1 6 12 7 8	ATLAS RD42 ATLAS ATLAS BCM LUCID FP420 2 7 7 13 8	ATLAS ATLAS ADDI-SIII 14 ADDI-SIII ADDI			
T4 -H8	NA 3DSi 3 16	ATLAS АТLAS МОЛТ Тосларована возвана МОЛТ 12 4 10 7 ³ 9	^{wa} STRAW - UA9 RP 3 14 3 10 5		ATLAS RP-MDT-MPI 13 ³ 19	UA9	AMS RP 7 3 22			
T4 -P0	NA NA62 Setup 10	NA62 NA62 7 21 7	2 NA62 7 28		35	мля: 30 5	NA62 10 22			
T6 -M2	^{NA} COMPASS 3 17	COMPASS 35	COMPASS 35		COMPASS 35	COMPASS 35	COMPASS 32			
CNGS	NA CNGS 3 17	CNGS 35	CNGS 35		CNGS 35	CN <mark>CS</mark> 35	CNGS 32			

2009 Test Beams

• **PS**

2009 PS Fixed Target Programme

Version 2.0

Colour code: green = PS/SPS-exp ; purple = LHC-exp ; dark blue = Outside exp ; yellow = not allocatable or Machine Development

		P1			P2			P3			P4			P5				P6			
		35			35			35			35			35				32			
	30 Apr		or	4 Jun			9 Jul			13 Aug		17 Sep				22 Oct					
		4 Jun			9 Jul			13 Aug			17 Sep			22 Oct				23 Nov			
T7 ^s	Setup	Irradiation							Irradiation		Irradi <mark>ati</mark> on				Irradiation						
	7	35				35		30 <mark>5</mark>		5	35		3 <mark>5</mark>			32					
т8	Setup	DIRAC		DIRAC		DIRAC			DIRAC			DIR <mark>AC</mark>			DIRAC						
	7	35			35		35			35			3 <mark>5</mark>			32					
Т9	Setup	T2K-ECAL		T2K ECAL	CALICE RPC	OPERA			AD3	AD3 TRACKER				NAG	2	VIPIX	NA	62	PE	BS	
	7	35			14	17	4	² 14	14	5	12	13	10	10	1 <mark>6</mark>		9	1	5	1	7
T10	Setup						CMS	ALICE	RD51				ATLAS	ATLAS (ALICE	ALICE		AL I	CE	ALICE
	7	14	6	15	14	13	8	15	15		30		10	5	15	7	8	7	1	5	9
T11	Setup		•			CLC	DUD	с	LOUD					CLOUD							
	7	35			18	17		35			35			35			32				

E. Gschwendtner, CERN