

Experimental progress and prospect on Charm CPV search

The 2nd International Workshop on High Intensity Electron-Positron Accelerator @2-7 GeV in China (HIEPA2018) Beijing, 2018/03/19-21

> SAUR Miroslav (On behalf of the LHCb collaboration)

University of Chinese Academy of Sciences

Introduction

- I. Charm physics and BSM
- II. CPV theory introduction
- III. LHCb detector

Results

- IV. Mixing and indirect CPV
- V. Direct CPV

Future

VI. Future prospects

I. Charm physics and BSM

Charm physics and BSM

- 1) Charm hadrons are the only particles with the up-type type quark where mixing and Charge-Parity violation (*CPV*) can occur
- 2) Standard model (SM) predicts little to none CPV in charm sector
- 3) Perfect place where to look for Beyond Standard Model (BSM) effects
- 4) Due to mass of charm quark theoretical calculations are challenging
- 5) In addition many studies in charm sector are important inputs for b-physics

II. CP violation theory introduction

- → D⁰ mesons are produced as a flavor eigenstates, but decays as mass eigenstates D₁ and D₂: $|D_1\rangle = p|D^0\rangle + q|\bar{D}^0\rangle$, $|D_2\rangle = p|D^0\rangle q|\bar{D}^0\rangle$, $|q|^2 + |p|^2 = 1$
- → Mixing occurs in the case: $\Delta M = M_1 M_2 \neq 0$ or $\Delta \Gamma = \Gamma_1 \Gamma_2 \neq 0$
- → Associated mixing parameters: $x = \frac{\Delta M}{\Gamma}$, $y = \frac{\Delta \Gamma}{2\Gamma}$, where: $\Gamma = \frac{\Gamma_1 + \Gamma_2}{2}$
- ➔ Influence of short and long distance effects

→ For the small mixing parameters ($x, y < 10^{-2}$) the time-dependent asymmetry can be approximated as:

$$A_{CP}(t) \equiv \frac{\Gamma(D^0(t) \to f) - \Gamma(\bar{D^0}(t) \to f)}{\Gamma(D^0(t) \to f) + \Gamma(\bar{D^0}(t) \to f)} \simeq A_{CP}^{dir,f} - A_{\Gamma} \frac{f}{t_D}$$

where A_{Γ} is the asymmetry between effective decay widths of ${
m D}^0$ and ${ar {
m D}^0}$

$$A_{\Gamma} = \frac{\Gamma(D^0 \to f) - \Gamma(\bar{D^0} \to f)}{\Gamma(D^0 \to f) + \Gamma(\bar{D^0} \to f)}$$

Mixing of $\mathbf{D}^0 - \bar{\mathbf{D}}^0$: introduction

- → First evidence of $D^0 \overline{D}^0$ mixing measured by the BaBar and Belle experiments [PRL 98 211802 (2007) and PRL 98 211803 (2007)]
- → Mixing observed by the LHCb experiment [PRL 110 101802 (2013)]

Mixing of $\mathbf{D}^0 - \bar{\mathbf{D}}^0$: introduction

- → First evidence of $D^0 \overline{D}^0$ mixing measured by the BaBar and Belle experiments [PRL 98 211802 and PRL 98 211803 (2007)]
- → Mixing observed by the LHCb experiment [PRL 110 101802 (2013)]

→ Mixing established as a 11.5 σ effect

CPV classification

- → CPV is present in the SM via Cabibbo-Kobayashi-Maskawa (CKM) mechanism, but is too weak to explain the Baryon asymmetry
- Today CPV is confirmed at strange [PRL 13 138 (1964)] and bottom [NP A 675 (2000), 398-403] sector, no observation in charm
- → Two types of CPV: Indirect (CPV in mixing, CPV in interference) and Direct

<u>CPV in mixing</u>

- → Independent on final state
- → Different mixing rates $D^0 \rightarrow \bar{D}^0$ and $\bar{D}^0 \rightarrow D^0$ $|\frac{q}{p}| \neq 1$
- → Accessible via the using flavor specifics decays
- → No mass difference or CPV in mixing observed so far
- → SM prediction: $\mathcal{O}(10^{-4})$

<u>CPV in interference</u>

 → Possibility of interference between mixing and decay amplitudes

$$\phi = \arg(\frac{q\bar{A}_f}{pA_f})$$

- → Can be observed as a decay-time-dependent difference in decay rates and as a timeintegrated difference
- → **SM** prediction: $\mathcal{O}(10^{-4})$

Direct CPV

- → Only possible CPV for charged hadrons
- \rightarrow Occurs in the case:

$$|\frac{\bar{A}_{\bar{f}}}{A_f}| \neq 1$$

- → Typically (for SCS modes): $A_{CP} < 10^{-4} 10^{-3}$
- → Time dependent measurements
- → Experimentally challenging

III. LHCb detector

LHCb detector

→ Single-arm forward spectrometer focused on heavy flavor (*b*, *c*) physics

Measurement of charm at LHCb

→ Large charm cross section at LHCb:

NPB 871 1 (2016), JHEP05 074 (2017)

 $\sigma(pp \to c\bar{c}) = \frac{[1419 \pm 12 \ (stat.) \pm 116 \ (syst.) \pm 65 \ (frag.)]\mu b @ 7 \text{ TeV}}{[2369 \pm 3 \ (stat.) \pm 152 \ (syst.) \pm 118 \ (frag.)]\mu b @ 13 \text{ TeV}}$

$$p_{\rm T} < 8 GeV/c, 2.0 < y < 4.5$$

- → Significant statistics collected during Run I (2011-2012, 7+8 TeV, 3 fb⁻¹):
 - About $5 \times 10^{12} \text{ D}^0$ and $2 \times 10^{12} \text{ D}^{*+}$ collected
- → Run II: higher collision energy and improved trigger→more statistics than Run I

Experimental aspects at LHCb

→ Flavor tagging: prompt vs secondary \rightarrow LHCb uses both methods

- Production asymmetries:
 - Different cross-section for $D_{(s)}^+/D_{(s)}^-, \ \Lambda_c^+/\Lambda_c^-$, ...
- → Detection asymmetries:
 - Different interactions with the detector material ($K^+ vs K^-$, $\pi^+ vs \pi^-$)
 - Depends on the particle momentum

IV. $D^0 - \overline{D}^0$ mixing and indirect CPV

- The latest results from LHCb using data from Run I (3 fb⁻¹) and from part of Run II (2015-2016, 2 fb⁻¹)
- → Using the prompt charm production: $D^{*+} \rightarrow D^{0} (\rightarrow K^{+}\pi^{-})\pi^{+}$
- → Study of $D^0 \rightarrow K^-\pi^+$ (Right-sign) and $D^0 \rightarrow K^+\pi^-$ (Wrong-sign) decays:

- → Significant yields: 1.77×10^8 RS and 7.22×10^5 WS decays
- → The *CP*-averaged decay-time-dependent ratio of WS-to-RS rates:

$$R^{\pm}(t) \approx R_D^{\pm} + \sqrt{R_D^{\pm}} y' \frac{t}{\tau} + \frac{x'^{\pm 2} + y'^{\pm 2}}{4} (\frac{t}{\tau})^2$$

where $x' \equiv x \cos \delta + y \sin \delta$ and $y' \equiv y \cos \delta - x \sin \delta$

→ Fit obtained by minimizing a χ^2 variable

$$\begin{split} R^{\pm}(t) &\approx R_D^{\pm} + \sqrt{R_D^{\pm}} y' \frac{t}{\tau} + \frac{x'^{\pm 2} + y'^{\pm 2}}{4} (\frac{t}{\tau})^2 \\ R^+ &\neq R^- \quad \text{direct CPV} \\ x'^+ &\neq x'^- \quad \text{CPV in mixing} \\ y'^+ &\neq y'^- \quad \text{and interference} \end{split}$$

 $A_D = \frac{R_D^+ - R_D^-}{R_D^+ + R_D^-}$

- Three scenarios were studied:
 - a) CPV allowed direct and indirect CPV allowed
 - b) No Direct CPV imposed condition $R_D^+ = R_D^-$
 - c) No CPV CP-conservation hypothesis fit (all mix. parameters same for D^0 and \overline{D}^0)

→ CPV parameter: $A_D = (-0.1 \pm 9.1) \times 10^{-3}$

→ Determination of |q/p|: 1.00 < |q/p| < 1.35 at 68.3 % confidence level 0.82 < |q/p| < 1.45 at 95.5 % confidence level

$$\begin{split} R^{\pm}(t) &\approx R_D^{\pm} + \sqrt{R_D^{\pm}} y' \frac{t}{\tau} + \frac{x'^{\pm 2} + y'^{\pm 2}}{4} (\frac{t}{\tau})^2 \\ R^+ &\neq R^- \quad \text{direct CPV} \\ x'^+ &\neq x'^- \quad \text{CPV in mixing} \\ y'^+ &\neq y'^- \quad \text{and interference} \end{split}$$

 $A_D = \frac{R_D^+ - R_D^-}{R_D^+ + R_D^-}$

- → Three scenarios were studied:
 - a) CPV allowed direct and indirect CPV allowed
 - b) No Direct *CPV* imposed condition $R_D^+ = R_D^-$
 - c) No CPV CP-conservation hypothesis fit (all mix. parameters same for D^0 and \overline{D}^0)

- The results are twice as precise as previous LHCb results based only on Run I data [PRL 111 251801 (2013)]
- → <u>No evidence for CPV observed</u>

A_{Γ} measurement: direct charm

- → The SM prediction: $\mathcal{O}(10^{-4})$
- → Enhancement possible by the several NP models up to the order $O(10^{-3} 10^{-2})$
- → Measurement done via ${
 m D}^0
 ightarrow {
 m K}^- {
 m K}^+$ and ${
 m D}^0
 ightarrow \pi^- \pi^+$ decays from ${
 m D}^*$

- → Previous measurement improved by nearly a factor of two. $A_{\Gamma}(D^0 \rightarrow K^-K^+) = (-0.30 \pm 0.32 \pm 0.10) \times 10^{-3}$ $A_{\Gamma}(D^0 \rightarrow \pi^-\pi^+) = (+0.46 \pm 0.58 \pm 0.12) \times 10^{-3}$
- Single combined value: $A_{\Gamma} = (-0.13 \pm 0.28 \pm 0.10) \times 10^{-3}$
- No evidence for CPV observed

PRL 118 261803 (2017)

A_{Γ} measurement: muon tagged

- → Using the secondary charm production for cross-check of direct charm results → prompt and secondary charm results are uncorrelated
- → Used the *b*-hadron decays, data set is dominated by the $B^- \rightarrow D^0 \mu \bar{\nu}_{\mu} X$ and $\bar{B}^0 \rightarrow D^0 \mu \bar{\nu}_{\mu} X$ (around 40 %) decays, full Run I data-set (3 fb⁻¹)
- → D meson reconstructed via K^-K^+ , $\pi^-\pi^+$ channels

A_{Γ} measurement: muon tagged

- → Using the secondary charm production for cross-check of prompt charm results → prompt and secondary charm results are uncorrelated
- → Used the *b*-hadron decays, data set is dominated by the $B^- \rightarrow D^0 \mu \bar{\nu}_{\mu} X$ and $\bar{B}^0 \rightarrow D^0 \mu \bar{\nu}_{\mu} X$ (around 40 %) decays, full Run I data-set (3 fb⁻¹)
- → D meson reconstructed via K^-K^+ , $\pi^-\pi^+$ channels

HFLAV A_{Γ} average (2016)

Multibody decays

- → Measurement of time evolution of phase space \rightarrow time dependent Dalitz plot
- → Direct access to many variables: $x, y, |q/p|, \phi$; access to amplitudes and phases, sensitivity for interferences $D^0 \rightarrow f \& D^0 \rightarrow \bar{f}$
- However the description is model-dependent

$$\rightarrow$$
 D⁰ \rightarrow K⁺ $\pi^{-}\pi^{+}\pi^{-}$ Run I data

- Time-integrated study
- → Wrong-sign: $D^0 \to K^+ \pi^- \pi^+ \pi^-$
- → Right-sign: $D^0 \to K^- \pi^+ \pi^+ \pi^-$
- → Most precise measurement of ${\rm D}^0 \to {\rm K}^+ \pi^- \pi^+ \pi^-$ branching ratio
- → Mixing in this mode: 8.2 σ
- More thorough study including Run II data is in progress

V. Direct CPV

$\Delta A_{CP}(D^0 \rightarrow K^-K^+/\pi^-\pi^+)$ muon tagged

- → Secondary charm production: $\bar{B}^0 \rightarrow D^0 (\rightarrow K^- K^+ / \pi^- \pi^+) \mu \bar{\nu}_{\mu} X$, Run I (3 fb⁻¹) data
- → Individual raw asymmetries depends on muon reconstruction efficiency $A_D(\mu^-)$ and asymmetry in B hadrons production $A_P(B)$: $A_{raw} = A_{CP} + A_D(\mu^-) + A_P(B)$
- → Difference of asymmetries: $\Delta A_{CP} = A_{raw}(K^-K^+) A_{raw}(\pi^-\pi^+)$

→ Result from the prompt charm production: $\Delta A_{CP} = (-0.10 \pm 0.08 \pm 0.03)$ % [PRL 116 191601 (2016)]

LHCb summary average (2016)

→ Average of the CPV searches $D^0 \rightarrow h^-h^+$ at LHCb

HFLAV world average (2016)

Compatible with no-CPV hypothesis in the charm sector at 6.5 % CL

VI. Future prospects for Run II and beyond

Prospect for indirect CPV searches

→ Results on the indirect *CPV* is already dominated by LHCb

1: BELLE2-TALK-CONF-2017-080

	$\sigma(x) \ [10^{-3}]$	$\sigma(y) \; [10^{-3}]$	$\sigma(q/p) \ [10^{-3}]$	$\sigma(\phi) [mrad]$
HFAG 2016	1.4	0.7	80	173
Run II	0.8	0.6	47	83
Run III	0.3	0.2	17	32
Belle II (50 ab ⁻¹) ¹	0.8	0.5	60	70

Prospects for direct CPV searches

- → Precision is already at $\mathcal{O}(10^{-3})$ level, so far no evidence for *CPV* in charm
- → With the the Run III data (50 fb⁻¹ in combination with Run I+II) the precision will be comparable with the **SM** prediction at $\mathcal{O}(10^{-4})$ level
- → Need for precise BR input by Belle II/HIEPA: $D^0 \rightarrow \pi^0 \pi^0$, $D^0 \rightarrow K_S K_S$, $D^0 \rightarrow \pi^0 \pi^+$
- 1) Multibody decays [slide: 30-31]
- 2) Rare decays (radiative, leptonic) [slide: 32]
- 3) Double Cabibbo Suppressed (DCS) decays (e.g. $D^+ \rightarrow K^+ \pi^+ \pi^-/K^+K^-K^+$)
- 4) Exploring charm baryons [slide: 33-34]
 - Measured 1st evidence for CPV in baryons: $\Lambda_b
 ightarrow p3\pi$ [Nature Phys. 13, 391-396 (2017)]
- → Need of detector upgrades [slide: backup]

Prospect: CPV in N-body decays

- → Strong phase vary in Phase Space \rightarrow this leads to local CPV asymmetries
- Need for detailed study of Phase space
- Model dependent: amplitude analysis
- → Model independent approach:

Binned approach

- → S_{cp} approach
- Significance of asymmetry in Dalitz plot [PLB 728 585 (2014)]

Unbinned approach (Energy test)

- Testing data consistency with no-CPV hypothesis
- Significance of asymmetry for each event

Prospect: direct CPV 4-body decays

- → The more precise detector → more possibilities with the study of D multi-body decays
- → The 2+3-body decays: only P-even amplitude accessible \rightarrow CPV via C-violation
- → The 4-body decays: also P-odd amplitudes \rightarrow CPV via P-violation
- → We can write: $A_{CP}^{P-even} \approx \sin \Delta \phi_{weak} \sin \Delta \phi_{strong}$ $A_{CP}^{P-odd} \approx \sin \Delta \phi_{weak} \cos \Delta \phi_{strong}$
- → First measurement: $D^0 \rightarrow \pi^+ \pi^- \pi^+ \pi^-$, *P*-odd *CPV* with the 2.7 σ significance [PLB 769 345-356 (2017)]

Mode	$A_{CP}^{P-odd} \ [10^{-3}]$	Exp.	Ref.
$D^+ \to K_S K^+ \pi^+ \pi^-$	$-12 \pm 10 \pm 5$	BaBar	PRD 84 031103
$D^0 \to K^+ K^- \pi^+ \pi^-$	$1.8 \pm 2.9 \pm 0.4$	LHCb	JHEP 10 005 (2014)
$D^0 \to K_S \pi^+ \pi^- \pi^0$	$-0.3 \pm 1.4^{+0.2}_{-0.8}$	Belle	PRD 95 091101

Prospect: CPV in rare decays

- → Large contribution from penguin diagrams \rightarrow larger values of CPV expected
- Two main categories: Leptonic and Radiative decays

Leptonic decays

- → First observation of $D^0 \rightarrow K^+K^-\mu^+\mu^$ and $D^0 \rightarrow \pi^+\pi^-\mu^+\mu^-$
- → 5.4 σ signal
- → *CPV* up to $\mathcal{O}(10^{-2})$

Radiative decays

- → Large CPV within SM, up to 10 %
- → With the upgrade, LHCb will be competitive in $D^0 \rightarrow \rho\gamma, \phi\gamma, K^*\gamma$
- → Belle measurement¹: $A_{CP}(D^0 \rightarrow \rho^0 \gamma) = (+5.6 \pm 15.1 \pm 0.6)\%$

CPV in $\Lambda_c^+ \to pK^-K^+$ and $\Lambda_c^+ \to p\pi^+\pi^-$

- → First measurement of CPV parameters in three-body Λ_c^+ decays
- → Full Run I (3 fb⁻¹) data used
- → The $\Lambda_b^0 \rightarrow \Lambda_c^+ \mu^- X$ decay channel used in order to reduce prompt background
- → Two SCS decays studied: $\Lambda_c^+ \rightarrow pK^-K^+$ (25 k) $\Lambda_c^+ \rightarrow p\pi^-\pi^+$ (160 k)
- → Measurement of difference $\Delta A_{CP} = A_{raw}(pK^-K^+) A_{raw}(p\pi^-\pi^+)$ in order to cancel production and detection asymmetry

LHCb-PAPER-2017-044

→ Final result: $\Delta A_{CP} = (0.30 \pm 0.91 \pm 0.61)$ %

CPV in charmed baryons

- → Several theoretical works about CPV in charmed baryons
- Multibody decays are preferred due to larger BR and access to CPV-odd observables

SCS

- → SM amplitudes are less suppressed, lower sensitivity to BSM amplitudes
- → Suggested channels: $\Lambda_c \rightarrow p\pi^+\pi^-/pK^+K^-$, $\Xi_c^+ \rightarrow pK^-\pi^+$

DCS

- → Significant suppression of SM amplitudes
- → No CP asymmetry from SM in such amplitudes
- → Suggested channel: $\Lambda_{\rm c}^+ \rightarrow {\rm pK}^+ \pi^-$

Conclusion

- Charm physics is still of a great importance
- Precision measurements of CPV are a fundamental tools to probe SM at energy scales and couplings unaccessible at the energy frontier
- → Still no signal of CPV (Direct or Indirect) in charm sector observed
 - obtained strong constraints for many BSM models
- → Key measurements are mainly limited by the statistics → with Run II data the $O(10^{-3} 10^{-4})$ precision is now becoming possible
- → Several new analysis methods are now used for Run II data
- With several major upgrades planned for Run III and Run V, LHCb will be one of the main driving forces in the heavy flavor physics during coming years
 - after 2025 only dedicated heavy flavor experiment!

Thank you for your attention

Planned LHCb upgrades

LHCb upgrade Phase I (Run III)

- → Hardware upgrade for Run III:
 - VELO upgrade: 40 MHz readout (1 MHz), 790k channels/module (4096), C0₂ internal cooling
 - New Scintillating Fibre Tracker (SciFi)
- → Software upgrade for Run 3:
 - Fully software trigger, 40 MHz event rate frequency
 - Full event reconstruction at the HLT level output rate in Gbs⁻¹
- → Upgrade I construction on track for Run III
- → Expected recorded luminosity: 5 fb⁻¹ per year
- → Before Run IV (LS3):
 - Phase I(b) upgrade: consolidation of Phase I upgrade
 - Replace of innermost parts of ECAL
 - Adding of Magnet side stations
 - Same luminosity as during Run III

LHCb upgrade Phase I (Run III)

LHCb upgrade Phase I (Run III)

Type	Observable	Current	LHCb	Upgrade	Theory
		precision	2018	$(50{\rm fb}^{-1})$	uncertainty
B_s^0 mixing	$2\beta_s \ (B^0_s \to J/\psi \ \phi)$	0.10 [9]	0.025	0.008	~ 0.003
	$2\beta_s \ (B_s^0 \to J/\psi \ f_0(980))$	0.17 [10]	0.045	0.014	~ 0.01
	$A_{ m fs}(B^0_s)$	$6.4 \times 10^{-3} \ [18]$	$0.6 imes 10^{-3}$	0.2×10^{-3}	0.03×10^{-3}
Gluonic	$2\beta_s^{\text{eff}}(B_s^0 o \phi\phi)$	—	0.17	0.03	0.02
penguin	$2\beta_s^{\text{eff}}(B_s^0 \to K^{*0}\bar{K}^{*0})$	_	0.13	0.02	< 0.02
	$2\beta^{\text{eff}}(B^0 o \phi K_S^0)$	0.17 [18]	0.30	0.05	0.02
Right-handed	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\gamma)$	_	0.09	0.02	< 0.01
currents	$ au^{ m eff}(B^0_s o \phi \gamma) / au_{B^0_s}$	—	5~%	1%	0.2%
Electroweak	$S_3(B^0 \to K^{*0}\mu^+\mu^-; 1 < q^2 < 6 \mathrm{GeV}^2/c^4)$	0.08 [14]	0.025	0.008	0.02
penguin	$s_0 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	25%[14]	6~%	2%	7~%
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6 {\rm GeV^2/c^4})$	0.25 [15]	0.08	0.025	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	25%[16]	8~%	2.5%	$\sim 10\%$
Higgs	$\mathcal{B}(B^0_s o \mu^+ \mu^-)$	$1.5 \times 10^{-9} \ [2]$	0.5×10^{-9}	0.15×10^{-9}	0.3×10^{-9}
penguin	$\mathcal{B}(B^0 o \mu^+ \mu^-) / \mathcal{B}(B^0_s o \mu^+ \mu^-)$	_	$\sim 100 \%$	$\sim 35\%$	$\sim 5 \%$
Unitarity	$\gamma \ (B \to D^{(*)} K^{(*)})$	$\sim 10 12^{\circ} [19, 20]$	4°	0.9°	negligible
triangle	$\gamma \ (B_s^0 \to D_s K)$	_	11°	2.0°	negligible
angles	$\beta \ (B^0 o J/\psi K_S^0)$	$0.8^{\circ} \ [18]$	0.6°	0.2°	negligible
Charm	A_{Γ}	$2.3 \times 10^{-3} [18]$	0.40×10^{-3}	0.07×10^{-3}	_
CP violation	ΔA_{CP}	$2.1 \times 10^{-3} [5]$	0.65×10^{-3}	0.12×10^{-3}	_

CERN/LHCC 2012-007

LHCb upgrade Phase II (Run V)

CERN-LHCC-2017-003

LHCb upgrade Phase II (Run V)

Topics and observables	Experimental reach	Remarks
EW Penguins		
Global tests in many $b \to s\mu^+\mu^-$ modes	e.g. 440k $B^0 \to K^* \mu^+ \mu^- \& 70k \Lambda_b^0 \to \Lambda \mu^+ \mu^-;$	Phase-II ECAL required for
with full set of precision observables;	Phase-II $b \to d\mu^+\mu^- \approx \text{Run-1} \ b \to s\mu^+\mu^-$	lepton universality tests.
lepton universality tests; $b \to dl^+l^-$ studies	sensitivity.	
Photon polarisation		
$\overline{\mathcal{A}}^{\Delta} \text{ in } B^0_s \to \phi \gamma; B^0 \to K^* e^+ e^-;$	Uncertainty on $\mathcal{A}^{\Delta} \approx 0.02;$	Strongly dependent on
baryonic modes	$\sim 10k \ \Lambda_b^0 \to \Lambda\gamma, \Xi_b \to \Xi\gamma, \Omega_b^- \to \Omega\gamma$	performance of ECAL.
$m{b} ightarrow cl^- ar{ u_l}$ lepton-universality tests		
Polarisation studies with $B \to D^{(*)} \tau^- \bar{\nu_{\tau}}$;	e.g. 8M $B \to D^* \tau^- \bar{\nu_\tau}, \tau^- \to \mu^- \bar{\nu_\mu} \nu_\tau$	Additional sensitivity expected
τ^{-}/μ^{-} ratios with B_{s}^{0}, A_{b}^{0} and B_{c}^{+} modes	$\& \sim 100k \ \tau^- \to \pi^- \pi^+ \pi^- (\pi^0) \nu_\tau$	from low- p tracking.
$B^0_a, B^0{ ightarrow}\mu^+\mu^-$		
$\frac{\overline{R}}{R} \equiv \mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-);$	Uncertainty on $R \approx 20\%$	
$\tau_{B^0 \to \mu^+ \mu^-}$; <i>CP</i> asymmetry	Uncertainty on $\tau_{B^0 \to \mu^+ \mu^-} \approx 0.03 \mathrm{ps}$	
$LFV \tau$ decays		
$\frac{\mu + \nu}{\tau^- \to \mu^+ \mu^- \mu^-}, \tau^- \to h^+ \mu^- \mu^-$	Sensitive to $\tau^- \rightarrow \mu^+ \mu^- \mu^-$ at 10^{-9}	Phase-II ECAL valuable
$\tau^- \rightarrow \phi \mu^-$		for background suppression.
CKM tests		0
\sim with $B^- \rightarrow DK^ B^0 \rightarrow D^+ K^-$ etc	Uncertainty on $\gamma \simeq 0.4^{\circ}$	Additional sensitivity expected
ϕ_{-} with $B^{0} \rightarrow I/\psi K^{+}K^{-} - I/\psi \pi^{+}\pi^{-}$	Uncertainty on $\phi_{-} \approx 3 \mathrm{mrad}$	in CP observables from Phase-II
ϕ_s^{sis} with $B^0 \to \phi \phi$	Uncertainty on $\phi_s^{s\bar{s}s} \approx 8 \mathrm{mrad}$	ECAL and low- <i>n</i> tracking
ϕ_s with D_s , $\phi\phi$	Uncertainty on $\Delta \Gamma_d / \Gamma_d \sim 10^{-3}$	Approach SM value.
Semileptonic asymmetries $a^{d,s}$	Uncertainties on $a^{d,s} \sim 10^{-4}$	Approach SM value for a^d
$ V_{ub} / V_{cb} $ with Λ_{0}^{0} , B_{0}^{0} and B_{+}^{+} modes	e. a. $120k B^+ \rightarrow D^0 \mu^- \bar{\nu_{\mu}}$	Significant gains achievable from
$ u_0 v_0 v_0 v_0 v_0 v_0 v_0 v_0 v_0 v_0 v_0 v_0 v_0 v_0 v_0 v_0 v_0 v_0 v_0 v_$	$c.g. = c c c c \mu c \mu$	thinning or removing RF-foil.
Charm		0 0
<u>CP-violation studies with</u> $D^0 \rightarrow h^+h^-$	$e_{a} 4 \times 10^9 D^0 \rightarrow K^+ K^-$:	Access <i>CP</i> violation at SM values
$D^0 \rightarrow K_c^0 \pi^+ \pi^-$ and $D^0 \rightarrow K^{\mp} \pi^{\pm} \pi^+ \pi^-$	Uncertainty on $A_{\Gamma} \sim 10^{-5}$	
Strange		
Bara dagay soarches	Sonsitive to $K^0 \rightarrow \mu^+ \mu^-$ at 10^{-12}	Additional constitutive possible with
mare decay searches	Sensitive to $\Lambda_{\rm S} \rightarrow \mu^+ \mu^-$ at 10 =	downstream trigger enhancements.

LHC timeline

Belle II status

Belle II - status of the experiment

- → Phase II (2018): first collisions, measurement of background, no PXD
- → Phase III (2019): Full detector, physical run

A_{Γ} measurement: muon tagged

→ Results by the year and magnet polarity:

- → Compatible with direct charm A_{Γ} measurements
- → <u>No CPV observed</u>

CPV in $\Lambda_c^+ \to p K^- K^+$ and $\Lambda_c^+ \to p \pi^+ \pi^-$

- Obtained results in the 4 bins: collision energy and magnet polarity
- → <u>First</u> result of search for direct *CPV* search in three-body Λ_c^+ decays:

 $\Delta A_{CP} = [0.30 \pm 0.91 \text{ (stat.)} \pm 0.61 \text{ (syst.)}] \%$

arXiv: 1712.07051

- → Result shows no sign of direct CPV
- More data required for more precise measurement

CPV in $D^+_{(s)} \rightarrow \eta' \pi^+$

→ Study of CF $D_s^+ \rightarrow \eta' \pi^+$ and SCS $D^+ \rightarrow \eta' \pi^+$ decays:

- → Full reconstruction chain: $D^+_{(s)} \to \eta' (\to \pi^+ \pi^- \gamma) \pi^+$
- First measurement at hadron collider (very challenging photon background)
- → Measurement is done via the difference parameter ΔA_{CP}
- → For difference (and for tracking and detection asymmetries canceling) the control channels $D^+ \rightarrow K_s^0 \pi^+$ and $D_s^+ \rightarrow \phi \pi^+$ are used
- Systematics is very limited by the photonic background

CPV in $D^+_{(s)} \rightarrow \eta' \pi^+$

- → Data from Run I (2011-2012, 3 fb⁻¹)
- Full reconstruction chain:

 $D^+_{(s)} \to \eta' (\to \pi^+ \pi^- \gamma) \pi^+$

- First measurement at hadron collider
 (very challenging photon background)
- → Data divided into 12 subsamples:
 Energy (7 and 8 TeV)
 Magnet polarity (Up and Down)
 3 Trigger selections
- Each subsample then divided into
 3(p_{T}) x 3(η) bins based on bachelor pion
- Systematics limited by the background

CPV in $\mathbf{D}^+_{(\mathbf{s})} \to \eta' \pi^+$

- → Based on Run I data (2011-2012, 3 fb⁻¹)
- Systematics is very limited by the photonic background
- → CP asymmetries is then calculated as: $\Delta \mathcal{A}_{CP}(D^{\pm} \to \eta' \pi^{\pm}) \equiv \mathcal{A}_{CP}(D^{\pm} \to \eta' \pi^{\pm}) \mathcal{A}_{CP}(D^{\pm} \to K_{S}^{0} \pi^{\pm})$ $= \mathcal{A}_{raw}(D^{\pm} \to \eta' \pi^{\pm}) \mathcal{A}_{raw}(D^{\pm} \to K_{S}^{0} \pi^{\pm}) + \mathcal{A}(\bar{K}^{0} K^{0})$ $\Rightarrow \mathcal{A}_{CP} \approx \Delta \mathcal{A}_{CP}(D^{\pm} \to \eta' \pi^{\pm}) + \mathcal{A}_{CP}(D^{\pm} \to K_{S}^{0} \pi^{\pm})$ $\Delta \mathcal{A}_{CP}(D_{s}^{\pm} \to \eta' \pi^{\pm}) \equiv \mathcal{A}_{CP}(D_{s}^{\pm} \to \eta' \pi^{\pm}) \mathcal{A}_{CP}(D_{s}^{\pm} \to \phi \pi^{\pm})$

 $= \mathcal{A}_{raw}(\mathbf{D}_{s}^{\pm} \to \eta' \pi^{\pm}) - \mathcal{A}_{raw}(\mathbf{D}_{s}^{\pm} \to \phi \pi^{\pm})$ $\xrightarrow{\Rightarrow} \mathcal{A}_{CP} \approx \Delta \mathcal{A}_{CP}(\mathbf{D}_{s}^{\pm} \to \eta' \pi^{\pm}) + \mathcal{A}_{CP}(\mathbf{D}_{s}^{\pm} \to \phi \pi^{\pm})$

→ The most precise results to date:

$$\begin{aligned} \mathcal{A}_{\rm CP}({\rm D}^{\pm}\to\eta'\pi^{\pm}) &= [-0.61\pm0.72~({\rm stat.})\pm0.53~({\rm syst.})\pm0.12~({\rm K}_{\rm s}^{0}\pi^{\pm})]~\% & \begin{array}{c} \mbox{Phys. Lett. B} \\ \mbox{771 (2017) 21} \\ \\ \mathcal{A}_{\rm CP}({\rm D}_{\rm s}^{\pm}\to\eta'\pi^{\pm}) &= [-0.82\pm0.36~({\rm stat.})\pm0.22~({\rm syst.})\pm0.27~(\phi\pi^{\pm})]~\% \end{aligned}$$

